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Preface

One of the most common statistical procedures in the behavioral and
social sciences is to test the hypothesis that treatments or interven-
tions have no effect, or that the correlation between two variables is
equal to zero, and so on (i.e., tests of the null hypothesis). Researchers
have long been concerned with the possibility that they will reject the
null hypothesis when it is in fact correct (i.e., make a Type I error), and
an extensive body of research and data-analytic methods exists to help
understand and control these errors. Substantially less attention has
been devoted to the possibility that researchers will fail to reject the
null hypothesis, when in fact treatments, interventions, and so forth,
have some real effect (i.e., make a Type II error). Statistical tests that
fail to detect the real effects of treatments or interventions might sub-
stantially impede the progress of scientific research.

The statistical power of a test is the probability that it will lead you to
reject the null hypothesis when that hypothesis is in fact wrong. Be-
cause most statistical tests are done in contexts where treatments have
at least some effect (although it might be minuscule), power often trans-
lates into the probability that the test will lead to a correct conclusion
about the null hypothesis. Viewed in this light, it is obvious why re-
searchers have become interested in the topic of statistical power, and
in methods of assessing and increasing the power of their tests.

This book presents a simple and general model for statistical
power analysis based on the widely used F statistic. A wide variety of
statistics used in the social and behavioral sciences can be thought of
as special applications of the general linear model (e.g., t tests, analy-
sis of variance and covariance, correlation, multiple regression), and
the F statistic can be used in testing hypotheses about virtually any of
these specialized applications. The model for power analysis laid out
here is quite simple, and it illustrates how these analyses work and
how they can be applied to problems of study design, to evaluating
others' research, and even to problems such as choosing the appro-
priate criterion for defining statistically significant outcomes.

vii



viii PREFACE

In response to criticisms of traditional null hypothesis testing, sev-
eral researchers have developed methods for testing what is referred
to as a minimum-effect hypothesis (i.e., the hypothesis that the effect
of treatments, interventions, etc. exceeds some specific minimal
level). This is the first book to discuss in detail the application of
power analysis to both traditional null hypothesis tests and to mini-
mum-effect tests. It shows how the same basic model applies to both
types of testing, and illustrates applications of power analysis to both
traditional null hypothesis tests (i.e., tests of the hypothesis that treat-
ments have no effect) and to minimum-effect tests (i.e., tests of the hy-
pothesis that the effects of treatments exceeds some minimal level). A
single table is used to conduct both significance tests and power anal-
yses for traditional and for minimum-effect tests (The One-Stop F Ta-
ble, presented in Appendix B), and some relatively simple procedures
are presented that may be used to ask a series of important and so-
phisticated questions about the research.

This book is intended for a wide audience, and so presentations
are kept simple and nontechnical wherever possible. For example,
Appendix A presents some fairly daunting statistical formulas, but it
also shows how a researcher with little expertise or interest in statis-
tical analysis could quickly obtain the values needed to carry out
power analyses for any range of hypotheses. Similarly, the first three
chapters of this book present a few formulas, but the reader who
skips them entirely will still be able to follow the ideas being pre-
sented in this book.

Finally, most of the examples presented herein are drawn from the
social and behavioral sciences, as are many of the generalizations
about statistical methods that are most likely to be used. In part, this
reflects our biases (we are both psychologists), but it also reflects the
fact that issues related to power analysis have been widely discussed
in this literature over the last several years. Researchers in other ar-
eas may find that some of the specific advice offered here does not ap-
ply as well to them, but the general principles articulated in this book
should be useful to researchers in a wide range of disciplines.

This second edition includes a number of features that were not
part of our first edition. First, a chapter (chap. 4) dealing with power
analysis in multifactor analysis of variance (ANOVA), including re-
peated measures designs, has been added. Multifactor ANOVA is very
common in the behavioral and social sciences, and whereas the con-
ceptual issues in power analysis are quite similar in factorial ANOVA
as in other methods of analysis, there are several features of ANOVA
that require special attention, and this topic deserves treatment in a
separate chapter. Second, a "One-Stop PV Table" has been included,
which presents the same information as in the One-Stop F Table,
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framed in terms of the percentage of variance (PV) explained rather
than in terms of F. This table allows researchers to find a quick and
simple answer to questions like "How large would the effect have to be
in my study to yield power of .80?". Finally, a CD with a simple pro-
gram called the "One-Stop F Calculator" is included, which allows re-
searchers to find both F and PV values needed for testing hypotheses
and for estimating power for both traditional and modern hypothesis
testing strategies. This program makes it possible to put the concepts
in this book into play quickly and easily.
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1The Power of Statistical Tests

In the social and behavioral sciences, statistics serve two general pur-
poses. First, they can be used to describe what happened in a particu-
lar study (descriptive statistics). Second, they can be used to help
draw conclusions about what those results mean in some broader
context (inferential statistics). The main question in inferential statis-
tics is whether a result, finding, or observation from a study reflects
some meaningful phenomenon in the population from which that
study was drawn. For example, if 100 college sophomores are sur-
veyed and it is determined that a majority of them prefer pizza to hot
dogs, then does this mean that people in general (or college students
in general) also prefer pizza? If a medical treatment yields improve-
ments in 6 out of 10 patients, then does this mean that it is an effective
treatment that should be approved for general use?

The process of drawing inferences about populations from samples
is a risky one, and a great deal has been written about the causes and
cures for errors in statistical inference. Statistical power analysis (J.
Cohen, 1988; Kraemer & Thiemann, 1987; Lipsey, 1990) falls under
this general heading. Studies with too little statistical power can fre-
quently lead to erroneous conclusions. In particular, they will very of-
ten lead to the incorrect conclusion that findings reported in a
particular study are not likely to be true in the broader population. In
the previous example, the fact that a medical treatment worked for 6
out of 10 patients is probably insufficient evidence that it is truly safe
and effective, and if there is nothing more than this study to rely on, it
might be concluded that the treatment has not been proven effective.

1



2 CHAPTER 1

This conclusion may say as much about the low level of statistical
power in the study as about the value of the treatment.

This chapter describes the rationale for and applications of statisti-
cal power analysis. In most of examples, it describes or applies power
analysis in studies that assess the effect of some treatment or inter-
vention (e.g., psychotherapy, reading instruction, performance incen-
tives) by comparing outcomes for those who have received the
treatment to outcomes of those who have not (nontreatment or control
group). However, as is emphasized throughout this book, power anal-
ysis is applicable to a very wide range of statistical tests, and the same
simple and general model can be applied to many of the statistical
techniques used in the social and behavioral sciences.

THE STRUCTURE OF STATISTICAL TESTS

Understanding statistical power requires first understanding the
ideas that underlie statistical hypothesis testing. Suppose 50 children
are exposed to a new method of reading instruction, and then it is
shown that their performance on reading tests is, on average, 6 points
higher (on a 100-point test) than that of 50 similar children who re-
ceived standard methods of instruction. Does this mean that the new
method is truly better? A 6-point difference might mean that the new
method is really better, but it is also possible that there is no real dif-
ference between the two methods, and this observed difference is the
result of the sort of random fluctuation that might be expected when
the results from a single sample are used (here, the 100 children as-
signed to the two reading programs) to draw inferences about the ef-
fects of these two methods of instruction in the population.

One of the most basic ideas in statistical analysis is that results
obtained in a sample do not necessarily reflect the state of affairs in
the population from which that sample was drawn. For example, the
fact that scores averaged 6 points higher in this particular group of
children does not necessarily mean that scores will be 6 points
higher in the population, or that the same 6-point difference would
be found in another study examining a new group of students. Be-
cause samples do not (in general) perfectly represent the popula-
tions from which they were drawn, some instability should be
expected in the results obtained from each sample. This instability is
usually referred to as sampling error. The presence of sampling er-
ror is what makes drawing inferences about populations from sam-
ples risky. One of the key goals of statistical theory is to estimate the
amount of sampling error likely to be present in different statistical
procedures and tests, and thereby gaining some idea about the
amount of risk involved in using a particular procedure.
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Statistical significance tests can be thought of as decision aids. That
is, these tests can help researchers draw conclusions about whether
the findings of a particular study represent real population effects, or
whether they fall within the range of outcomes that might be produced
by random sampling error. For example, there are two possible inter-
pretations of the findings in this study of reading instruction:

1. The difference between average scores from the two pro-
grams is so small that it might reasonably represent noth-
ing more than sampling error.

2. The difference between average scores from the two pro-
grams is so large that it cannot be reasonably explained in
terms of sampling error.

The most common statistical procedure in the social and behav-
ioral sciences is to pit a null hypothesis (H0) against an alternative
(H1). In this example, the null and alternative hypotheses might take
the following forms:

H0—Reading instruction has no effect. It does not matter how chil-
dren are taught to read, because in the population there is no differ-
ence in the average scores of children receiving either method of
instruction.

Hl—Reading instruction has an effect. It does matter how you teach
children are taught to read, because in the population there is a differ-
ence in the average scores of children receiving different method of in-
struction.

Although null hypotheses usually refer to "no difference" or "no ef-
fect," it is important to understand that there is nothing magic about
the hypothesis that the difference between two groups is zero. It might
be perfectly reasonable to evaluate the following set of possibilities:

H0—In the population, the difference in the average scores of those
receiving these two methods of reading instruction is 6 points.

H1—In the population, the difference in the average scores of those
receiving these two methods of reading instruction is not 6 points.

The null hypothesis (H0) is a specific statement about results in a
population that can be tested (and therefore nullified). One reason
that null hypotheses are often framed in terms of "no effect" is that
the alternative that is implied by this hypothesis is easy to interpret.
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If researchers test and reject the hypothesis that treatments have no
effect, they are left with the alternative that treatments have at least
some effect. Another reason for testing the hypothesis that treat-
ments have no effect whatsoever is that probabilities, test statistics,
and so on, are easy to calculate when the effect of treatments is as-
sumed to be zero.

In contrast, if researchers test and reject the hypothesis that the
difference between treatments is exactly 6 points, they are left with a
wide range of alternatives (e.g., the difference is 5 points, the differ-
ence is 10 points, etc.), including the possibility that there is no dif-
ference whatsoever. Although the hypothesis that treatments have no
effect is the most common basis for statistical hypothesis tests (J.
Cohen, 1994, refers to this hypothesis as the "nil hypothesis"), as is
shown later, there are a number of advantages to posing and testing
substantive hypotheses about the size of treatment effects (Murphy
& Myors, 1999). For example, it is easy to test the hypothesis that the
effects of treatments are negligibly small (e.g., they account for 1% or
less of the variance in outcomes, or that the standardized mean dif-
ference is . 10 or less). If researchers test and reject this hypothesis,
they are left with the alternative hypothesis that the effect of treat-
ments is not negligibly small, but rather is large enough to deserve at
least some attention. The methods of power analysis described in
this book are easily extended to such minimum-effect tests, and are
not in any way limited to traditional tests of the null hypothesis that
treatments have no effect.

What Determines the Outcomes of Statistical Tests?

There are four outcomes that can occur when researchers use the re-
sults obtained in a particular sample (e.g., the finding that one treat-
ment works better than another in that sample) to draw inferences
about a population (e.g., the inference that the treatment will also be
better in the population). These outcomes are shown in Fig. 1.1.

The concern here is with understanding and minimizing errors in
statistical inference; as Fig. 1.1 shows, there are two ways to make er-
rors when testing hypotheses. First, it is possible that the treatment
(e.g., new method of instruction) has no real effect in the population,
but the results in the sample might lead to the belief that it does have
some effect. If you the results of this study were used to conclude that
the new method of instruction was truly superior to the standard
method, when in fact there were no differences, then this would be a
Type I error. Type I errors might lead researchers to waste time and re-
sources by pursuing what is essentially a dead end, and researchers
have traditionally gone to great lengths to avoid these errors.
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FIG. 1.1 Outcomes of statistical tests.

There is an extensive literature dealing with methods of estimating
and minimizing the occurrence of Type I errors (Zwick & Marascuilo,
1984). The probability of making a Type I error is in part a function of the
standard or decision criterion used in testing a hypothesis (often re-
ferred to as alpha, or a). A very lenient standard (e.g., if there is any differ-
ence between the two samples, it will be concluded that there is also a
difference in the population) might lead to more frequent Type I errors,
whereas a more stringent standard might lead to few Type I errors.1

A second type of error, referred to as Type II error, is also common
in statistical hypothesis testing (J. Cohen, 1994; Sedlmeier &
Gigerenzer, 1989). A Type II error occurs when researchers conclude
in favor of H0, when in fact Hl is true. Statistical power analysis is con-
cerned with Type II errors. The power of a statistical test is defined as
one minus the probability of making a Type II error (i.e., if the proba-
bility of making a Type II error is b, power = 1 - b, or power is the prob-
ability that you will avoid a Type II error). Studies with high levels of
statistical power will rarely fail to detect the effects of treatments. If it

'It is important to note that Type I errors can only occur when the null hypothesis is
actually true. If the null hypothesis is that there is no true treatment effect (a nil hypothe-
sis), then this will rarely be the case. As a result, Type I errors are probably quite rate in
tests of the traditional null hypothesis, and efforts to control these errors at the expense
of making more Type II errors might be ill advised (Murphy, 1990).
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is assumed that most treatments have at least some effect, then the
statistical power of a study translates into the probability that the
study will lead to the correct conclusion (i.e, that it will detect the ef-
fects of treatments).

Effects of Sensitivity, Effect Size, and Decision Criteria on Power

The power of a statistical test is a function of its sensitivity, the size of the
effect in the population, and the standards or criteria used to test statisti-
cal hypotheses. Studies have higher levels of statistical power when:

1. They are highly sensitive. Researchers may increase sensitivity
by using better measures, or a study design that allows them to con-
trol for unwanted sources of variability in the data (for the moment,
sensitivity is defined in terms of the degree to which sampling error in-
troduces imprecision into the results of a study; a fuller definition is
presented later in this chapter). The simplest method of increasing
the sensitivity of a study is to increase its sample size (N). As N in-
creases, statistical estimates become more precise and the power of
statistical tests increase.

2. Effect sizes (ES) are large. Different treatments have different ef-
fects. It is easiest to detect the effect of a treatment if that effect is large
(e.g., when treatment means are very different, or, relatedly, when
treatments account for a substantial proportion of variance in out-
comes; specific measures of effect size are discussed later in this
chapter and in the chapters that follow). When treatments have very
small effects, these effects can be difficult to reliably detect. As ES val-
ues increase, power increases.

3. Standards are set that make it easier to reject H0. It is easier to
reject H0 when the significance criterion, or alpha (a) level, is .05 than
when it is .01 or .001. As the standard for determining significance be-
comes more lenient, power increases.

Power is highest when all three of these conditions are met (i.e., sen-
sitive study, large effect, lenient criterion for rejecting the null hypoth-
esis). In practice, sample size (which affects sensitivity) is probably
the more important determinant of power. Effect sizes in the social
and behavioral sciences tend to be small or moderate (if the effect of a
treatment is so large that it can be seen by the naked eye, even in small
samples, then there may be little reason to test for it statistically), and
researchers are often unwilling to abandon the traditional criteria for
statistical significance that are accepted in their field (usually, alpha
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levels of .05 or .01; Cowles & Davis, 1982). Thus, effect sizes and deci-
sion criteria tend to be similar across a wide range of studies. In con-
trast, sample sizes vary considerably, and they directly impact levels
of power. With a sufficiently large N, virtually any statistic will be "sig-
nificantly" different from zero, and virtually any null hypothesis that is
tested will be rejected. Large N makes statistical tests highly sensitive,
and virtually any specific point hypothesis can be rejected if the study
is sufficiently sensitive (as is shown later, this is not true for tests of the
hypothesis that treatment effects fall in some range of values defined
as "negligibly small" or "meaningfully large"). For example, if the effect
of a new medication is an increase of .0000001% in the success rate of
treatments, then the null hypothesis that treatments have no effect is
formally wrong, and will be rejected in a study that is sufficiently sen-
sitive. With a small enough N, there may not be enough power to reli-
ably detect the effects of even the most substantial treatments.

Studies can have very low levels of power (i.e., are likely to make
Type II errors) when they use small samples, when the effect being
studied is a small one, and/or when stringent criteria are used to de-
fine a significant result. The worst case occurs when researchers use a
small sample to study a treatment that has a very small effect, and
they use a very strict standard for rejecting the null hypothesis. Under
those conditions, Type II errors may be the norm. To put it simply,
studies that use small samples and stringent criteria for statistical sig-
nificance to examine treatments that have small effects will almost al-
ways lead to the wrong conclusion about those treatments (i.e., to the
conclusion that treatments have no effect whatsoever).

THE MECHANICS OF POWER ANALYSIS

When a sample is drawn from a population, the exact value of any sta-
tistic (e.g., the mean, difference between two group means) is uncer-
tain, and that uncertainty is reflected by a statistical distribution.
Suppose, for example, that researchers introduce a treatment that
has no real effect (e.g., they use astrology to advise people about career
choices), and then compare outcomes for groups who receive this
treatment to outcomes for groups who do not receive it (control
groups). They will not always find that treatment and control groups
have exactly the same scores, even if the treatment has no real effect.
Rather, there is some range of values they might expect for any test sta-
tistic in a study like this, and the standards used to determine statisti-
cal significance are based on this range or distribution of values. In
traditional null hypothesis testing, a test statistic is statistically signif-
icant at the .05 level if its actual value is outside of the range of values
they would observe 95% of the time in studies where the treatment
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had no real effect. If the test statistic is outside of this range, then the
inference is that the treatment did have some real effect.

For example, suppose that 62 people are randomly assigned to
treatment and control groups, and the t statistic is used to compare
the means of the two groups. If the treatment has no effect whatsoever,
the t statistic should usually be near zero, and will have a value less
than or equal to 2.00 in 95% of all such studies. If the t statistic ob-
tained in a study is larger than 2.00, then the inference is that treat-
ments are very likely to have some effect; if there was no real effect of
treatments, then values above 2.00 would be a very rare event.

As the pervious example suggests, if treatments have no effect what-
soever in the population, researchers should not expect to always find
a difference of precisely zero between samples of those who do and do
not receive the treatment. Rather, there is some range of values that
might be found for any test statistic in a sample (e.g., in the example
cited earlier, the value of a t statistic is expected to be near zero, but it
might range from -2.00 to +2.00). The same is true if treatments have
a real effect. For example, if researchers expect that the mean in a
treatment group will be 10 points higher than the mean in a control
group (e.g., because this is the size of the difference in the population),
they should also expect some variability around that figure. Some-
times, the difference between two samples might be 9 points, and
sometimes it might be 11 or 12 points. The key to power analysis is es-
timating the range of values to reasonably expect for some test statis-
tic if the real effect of treatments is small, or medium, or large.

Figure 1.2 illustrates the key ideas in statistical power analysis.
Suppose researchers devise a new test statistic and use it to evaluate
the 6-point difference in reading test scores described earlier. The
larger the difference between the two treatment groups, the larger the
value of their test statistic. To be statistically significant, the value of
this test statistic must be 2.00 or larger. As Fig. 1.2 suggests, the
chance they will reject the null hypothesis that there is no difference
between the two groups depends substantially on whether the true ef-
fect of treatments is small or large.

If the null hypothesis that there is no real effect was true, then they
would expect to find values of 2.00 or higher for this test statistic in 5
tests out of every 100 performed (i.e., a = .05). This is illustrated in
Section 1 of Fig. 1.2. Section 2 of Fig. 1.2 illustrates the distribution of
test statistic values they might expect if treatments had a small effect
on the dependent variable. Researchers might notice that the distribu-
tion of test statistics they would expect to find in studies of a treatment
with this sort of effect has shifted a bit, and in this case 25% of the val-
ues they might expect to find are greater than or equal to 2.00. That is,
if the study is run under the scenario illustrated in Section 2 of this fig-



* - depending on the test statistic in question, the distributions might take
different forms, but the essential features of this figure would apply to
any test statistic

FIG. 1.2. Essentials of power analysis.
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ure (i.e., treatments have a small effect), then the probability research-
ers will reject the null hypothesis is .25. Section 3 of Fig. 1.2 illustrates
the distribution of values they might expect if the true effect of treat-
ments is large. In this distribution, 90% of the values are 2.00 or
greater, and the probability they will reject the null hypothesis is .90.
The power of a statistical test is the proportion of the distribution of
test statistics expected for that study that is above the critical value
used to establish statistical significance.

No matter what hypothesis is being tested or what statistic research-
ers are using to test that hypothesis, power analysis always involves
three basic steps, listed in Table 1.1. First, you must set some criterion
or critical value for "statistical significance". For example, the tables
found in the back of virtually any statistics textbook can be used to deter-
mine such critical values for testing the traditional null hypothesis. If the
test statistic computed exceeds this critical value, you will reject the null.
However, these tables are not the only basis for setting such a criterion.
Suppose you want to test the hypothesis that the effects of treatments are
so small that they can safely be ignored. This might involve specifying

TABLE 1.1

The Three Steps to Determining Statistical Power

1. Establish a criterion or critical value for statistical significance:

• What is the hypothesis (e.g., traditional null hypothesis,, mini-
mum-effect tests)?

• What level of confidence is desired (e.g., a = .05 vs. a = .01)?

• What is the critical value for the test statistic (based on the degrees
of freedom for the test and the " level)?

2. Estimate the effect size:

• Do you expect the treatments to have a large,, medium,, or small
effect?

• What is the range of values researchers expect to find for their test
statistic, given this effect size?

3. Determine where the critical value lies in relationship to the distribution
of test statistics researchers expect to find in a study:

• The power of a statistical test is the proportion of the distribution of
test statistics expected for that study that is above the critical value
used to establish statistical significance.



THE POWER OF STATISTICAL TESTS 11

some range of effects that would be designated as "negligible," and then
determining the critical value of a statistic needed to reject this hypothe-
sis. Chapter 2 shows the way such tests are done, and the implications of
such hypothesis testing strategies for statistical power analysis.

Second, an effect size must be estimated. That is, researchers must
make their best guess of how much effect the treatments being studied
are likely to have on the dependent variable(s); methods of estimating
effect sizes are discussed later in this chapter. As noted earlier, if there
are good reasons to believe that treatments have a very large effect, then
it should be quite easy to reject the null hypothesis. On the other hand,
if the true effects of treatments are small and subtle, then it might be
very hard to reject the hypothesis that they have no real effect.

Once researchers have estimated the effect size, it is also possible
to use that estimate to describe the distribution of test statistics they
should expect to find in studies of that particular treatment or set of
treatments. This process is described in more detail in chapter 2, but
a simple example serves to illustrate. Suppose researchers are using
the t test to assess the difference in the mean scores of those receiving
two different treatments. If there was no real difference between the
treatments, then they would expect to find t values near zero most of
the time, and they could use statistical theory to tell how much these
values might depart from zero as a result of sampling error. The t ta-
bles in most statistics textbooks tell how much variability researchers
might expect with samples of different sizes, and once they know the
mean (here, zero) and the standard deviation of this distribution, it is
easy to estimate what proportion of the distribution falls above or be-
low any critical value. If there is a large difference between the treat-
ments (e.g., the dependent variable has a mean of 500 and a standard
deviation of 100, and the mean for one treatment is usually 80 points
higher than the mean for another), then they should expect to find
large t values most of the time, and once again, they can use statistical
theory to estimate the distribution of values expected in such studies.

The final step in power analysis is a comparison between the val-
ues obtained in the first two steps. For example, if it is determined
that a t value of 2.00 is needed to reject a particular null hypothesis,
and it is also determined that because the treatments being studied
have very large effects it is likely that t values of 2.00 or greater will be
found 90% of the time, then the power of this test (i.e., power is .90)
has also been determined.

Sensitivity and Power

Sensitivity refers to the precision with which a statistical test distin-
guishes between true treatment effects and differences in scores that
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are the result of sampling error. As already noted, the sensitivity of
statistical tests is largely a function of the sample size. Large samples
provide very precise estimates of population parameters, whereas
small samples produce results than can be unstable and untrustwor-
thy. For example, if 6 children in 10 do better with a new reading cur-
riculum than with the old one, this might reflect nothing more than
simple sampling error. If 600 of 1,000 children do better with the new
curriculum, this is powerful and convincing evidence that there are
real differences between the new curriculum and the old one. In a
study with low sensitivity, there is considerable uncertainty about sta-
tistical outcomes. As a result, it might be possible to find a large treat-
ment effect in a sample, even though there is no true treatment effect
in the population. This translates into substantial variability in study
outcomes and the need for relatively demanding tests of statistical sig-
nificance. If outcomes can vary substantially from study to study, re-
searchers need to observe a relatively large effect to be confident that it
represents a true treatment effect and not merely sampling error. As a
result, it will be difficult to reject the hypothesis that there is no true ef-
fect, and many Type II errors might be made.

In a highly sensitive study, there is very little uncertainty or random
variation in study outcomes, and virtually any difference between
treatment and control groups is likely to be accepted as an indication
that the treatment has an effect in the population.

Effect Size and Power

Effect size is a key concept in statistical power analysis (J. Cohen,
1988; Rosenthal, 1991; Tatsuoka, 1993a). At the simplest level, effect
size measures provide a standardized index of how much impact
treatments actually have on the dependent variable. One of the most
common effect size measures is the standardized mean difference, d,
defined as d = (Mt - Mc)/SD, where Mt and Mc are the treatment and
control group means, respectively, and SD is the pooled standard de-
viation. By expressing the difference in group means in standard devi-
ation units, the d statistic provides a simple metric that allows for
comparison of treatment effects from different studies, areas or re-
search, and so on, without having to keep track of the units of mea-
surement used in different studies or areas of research. For example,
Lipsey and Wilson (1993) cataloged the effects of a wide range of psy-
chological, educational, and behavioral treatments, all expressed in
terms of d. Examples of interventions in these areas that have rela-
tively small, moderately large, and large effects on specific sets of out-
comes are presented in Table 1.2.
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For example, worksite smoking cessation/reduction programs
have a relatively small effect on quit rates (d = .21). The effects of class
size on achievement or of juvenile delinquency programs on delin-
quency outcomes are similarly small. Concretely, a d value of .20
means that the difference between the average score of those who re-
ceive the treatment and those who do not is only 20% as large as the
standard deviation of the outcome measure within each of the treat-
ment groups. This standard deviation measures the variability in out-
comes, independent of treatments, so d = .20 indicates that the
average effect of treatments is only one fifth as large as the variability
in outcomes that might be seen with no treatments. In contrast, inter-
ventions such as psychotherapy, meditation and relaxation, or posi-
tive reinforcement in the classroom have relatively large effects on

TABLE 1.2

Examples of Effect Sizes Reported in Lipsey and Wilson (1993) Review

Effect Size Dependent Variable

Small (d = .20)

Treatment programs for
juvenile delinquents

Worksite smoking cessa-
tion/reduction programs

Small vs. large class
size, all grade levels

Medium (d = .50)

Behavior therapy vs. pla-
cebo controls

Chronic disease patient
education

Enrichment programs for
gifted children

Large (d = .80)

Psychotherapy

Meditation and relax-
ation techniques

Positive reinforcement in learning
the classroom

delinquency outcomes

quit rates

achievement measures

various outcomes

compliance and health

cognitive, creativity,
affective outcomes

various outcomes

blood pressure

.17

.21

.20

.51

.52

.55

.85

.93

1.17

d
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outcomes such as functioning levels, blood pressure, and learning (d
values range from .85 to 1.17).

It is important to keep in mind that "small," "medium," or "large" ef-
fect refers to the size of the effect, but not necessarily to its impor-
tance. For example, a new security screening procedure might lead to
a small change in rates of detecting threats, but if this change trans-
lates into hundreds of lives saved at a small cost, then the effect might
be judged to be both important and worth paying attention to.

As Fig. 1.2 suggests, when the true treatment effect is very small, it
might be hard to accurately and consistently detect this effect in study
samples. For example, aspirin can be useful in reducing heart attacks,
but the effects are relatively small (d =.068; see, however, Rosenthal,
1993). As a result, studies of 20 or 30 patients taking aspirin or a pla-
cebo will not consistently detect the true and life-saving effects of this
drug. Large sample studies, however, provide compelling evidence of
the consistent effect of aspirin on heart attacks. On the other hand, if
the effect is relatively large, then it is easy to detect, even with a rela-
tively small sample. For example, cognitive ability has a strong influ-
ence on performance in school (d is about 1.10), and the effects of
individual differences in cognitive ability are readily noticeable even in
small samples of students.

Decision Criteria and Power

Finally, the standard or decision criteria used in hypothesis testing has a
critical impact on statistical power. The standards used to test statistical
hypotheses are usually set with a goal of minimizing Type I errors; alpha
levels are usually set at .05, .01, or some other similarly low level, reflect-
ing a strong bias against treating study outcomes that might be due to
nothing more than sampling error as meaningful (Cowles & Davis,
1982). Setting a more lenient standard makes it easier to reject the null
hypothesis, and although this can lead to Type I errors in those rare
cases where the null is actually true, anything that makes it easier to re-
ject the null hypothesis also increases the statistical power of the study.

As Fig. 1.1 shows, there is always a trade-off between Type I and
Type II errors. Making it very difficult to reject the null hypothesis
minimizes Type I errors (incorrect rejections), but also increases the
number of Type II errors. That is, if the null is rarely rejected, some-
times sample results will be incorrectly dismissed as mere sampling
error when they may in fact indicate the true effects of treatments. Nu-
merous authors have noted that procedures to control or minimize
Type I errors can substantially reduce statistical power, and may
cause more problems (i.e., Type II errors) than they solve (J. Cohen,
1994; Sedlmeier & Gigerenzer, 1989).
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Power Analysis and the General Linear Model

The following chapters describe a simple and general model for statis-
tical power analysis. This model is based on the widely used F statis-
tic. This statistic (and variations on the F) is used to test a wide range
of statistical hypotheses in the context of the general linear model (J.
Cohen & P Cohen, 1983; Horton, 1978; Tatsuoka, 1993b). This sta-
tistical model provides the basis for correlation, multiple regression,
analysis of variance, descriptive discriminant analysis, and all of the
variations of these techniques. The general linear model subsumes a
large proportion of the statistics that are widely used in the social sci-
ences, and tying statistical power analysis to this model shows how
the same simple set of techniques can be applied to an extraordinary
range of statistical analyses.

STATISTICAL POWER OF RESEARCH IN THE SOCIAL AND BEHAVIORAL SCIENCES

Research in the social and behavioral sciences often shows shockingly
low levels of power. Starting with J. Cohen's (1962) review of research
published in the Journal of Abnormal and Social Psychology, studies
in psychology, education, communication, journalism, and other re-
lated fields have routinely documented power in the range of from .20
to .50 for detecting small to medium treatment effects (Sedlmeier &
Gigerenzer, 1989). Despite decades of warnings about the conse-
quences of low levels of statistical power in the behavioral and social
sciences, the level of power encountered in published studies is lower
than .50 (Mone, Mueller, & Mauland, 1996). In other words, it is typi-
cal for studies in these areas to have less than a 50% chance of reject-
ing the null hypothesis. If researchers believe that the null hypothesis
is virtually always wrong (i.e., that treatments have at least some ef-
fect, even if it is a very small one), then this means that at least one half
of all studies in the social and behavioral sciences (perhaps as many
as 80%) are likely to reach the wrong conclusion when testing the null
hypothesis. This is even more startling and discouraging when they
realize that these reviews have examined the statistical power of pub-
lished research. Given the strong biases against publishing method-
ologically suspect studies or studies reporting null results, it is likely
that the studies that survive the editorial review process are better
than the norm, that they show stronger effects than similar unpub-
lished studies, and that the statistical power of unpublished studies is
even lower than the power of published studies.

Studies that do not reject the null hypothesis are often regarded by
researchers as failures. The levels of power already reported suggest
that "failure," defined in these terms, is quite common. If a treatment
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effect is small, and a study is designed with a power level of .20 (which
is depressingly typical), it is four times as likely to fail (i.e., fail to reject
the null) as to succeed. Power of .50 suggests that the outcome of the
study is basically like the flip of a coin. The study is just as likely to fail
as it is to succeed. It is likely that much of the apparent inconsistency
in research findings is due to nothing more than inadequate power
(Schmidt, 1992). If 100 studies are conducted, each with a power of
.50, one half of them will and one half will not reject the null. Given the
stark implications of low power, it is important to consider why re-
search in the social and behavioral sciences is so often conducted in a
way in which failure is more likely than success.

The most obvious possibility is that social scientists tend to study
treatments, interventions, and so on. that have very small and unreli-
able effects. Until recently, this explanation was widely accepted, but
the widespread use of meta-analysis in integrating scientific literature
suggests that this is not the case. There is now ample evidence from
literally hundred of analyses of thousands of individual studies that
the treatments, interventions, and the like studied by behavioral and
social scientists have substantial and meaningful effects (Haase,
Waechter, & Solomon, 1982; J. E. Hunter & Hirsh, 1987; Lipsey, 1990;
Lipsey& Wilson, 1993; Schmitt, Gooding, Noe, &Kirsch, 1984); these
effects are of a similar order of magnitude as many of the effects re-
ported in the physical sciences (Hedges, 1987). A second possibility is
that the decision criteria used to define statistical significance are too
stringent. Several chapters herein argue that researchers are often too
concerned with Type I errors and insufficiently concerned with statis-
tical power. However, the use of overly stringent decision criteria is
probably not the best explanation for low levels of statistical power.

The best explanation for the low levels of power observed in many ar-
eas of research is many studies use samples that are much too small to
provide accurate and credible results. Researchers routinely use sam-
ples of 20, 50, or 75 observations to make inferences about population
parameters. When sample results are unreliable, it is necessary to set
some strict standard to distinguish real treatment effects from fluctua-
tions in the data that are due to simple sampling error, and studies with
these small samples often fail to reject null hypotheses, even when the
population treatment effect is fairly large. On the other hand, very large
samples will allow for rejection of the null hypothesis even when it is very
nearly true (i.e., when the effect of treatments is very small). In fact, the
effects of sample size on statistical power are so profound that it is
tempting to conclude that a significance test is little more than a round-
about measure of how large the sample is. If the sample is sufficiently
small, the null hypothesis would virtually never be rejected. If the sample
is sufficiently large, the null hypothesis will virtually always be rejected.
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USING POWER ANALYSIS

Statistical power analysis can be used for both planning and diagno-
sis. The most typical use of power analysis is in designing research
studies. Power analysis can be used to determine how large a sample
should be, or in deciding what criterion should be used to define sta-
tistical significance. Power analysis can also be used as a diagnostic
tool, to determine whether a specific study has adequate power for
specific purposes, or to identify the sort of effects that can be reliably
detected in that study.

Because power is a function of the sensitivity of the study (which is
essentially a function of N), the size of the effect in the population (ES),
and the decision criterion used to determine statistical significance, it
is possible to solve for any of the four values (i.e, power, N, ES, a), given
the other three. However, none of these values is necessarily known in
advance, although some values may be set by convention. The criterion
for statistical significance (i.e., a) is often set at .05 or .01 by conven-
tion, but there is nothing sacred about these values. As is noted later,
one important use of power analysis is in making decisions about what
criteria should be used to describe a result as significant.

The effect size depends on the treatment, phenomenon, or vari-
able being studied, and is usually not known in advance. Sample
size is rarely set in advance, and N often depends on some combina-
tion of luck and resources on the part of the investigator. Actual
power levels are rarely known, and it can be difficult to obtain sensi-
ble advice about how much power is necessary. It is important to
understand how each of the parameters involved is determined
when conducting a power analysis.

Determining the Effect Size

There is a built-in dilemma in power analysis. In order to determine
the statistical power of a study, the effect size must be known. But if re-
searchers already knew the exact strength of the effect of the particu-
lar treatment, intervention, and so forth, they would not need to do the
study! The whole point of doing a study is to find out what effect the
treatment has, and the true effect size in the population is unlikely to
ever be known.

Statistical power analyses are always based on estimates of the ef-
fect size. In many areas of study, there is a substantial body of theory
and empirical research that will provide a well-grounded estimate of
the effect size. For example, there are literally hundreds of studies of
the validity of cognitive ability tests as predictors of job performance
(J. E. Hunter & Hirsch, 1987; Schmidt, 1992), and this literature sug-
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gests that the relation between test scores and performance is consis-
tently strong (corrected correlations of about .50 are frequently seen).
In order to estimate the statistical power of a study of the validity of a
cognitive ability test, the results from this literature could be used to
estimate the expected effect size. Even where there is not an extensive
literature available, researchers can often use their experience with
similar studies to realistically estimate effect sizes.

When there is no good basis for estimating effect sizes, power analy-
ses can still be carried out by making a conservative estimate. A study
that has adequate power to reliably detect small effects (e.g., a d of .20,
a correlation of. 10) will also have adequate power to detect larger ef-
fects. On the other hand, if researchers design their studies with the
assumption that effects will be large, they might have insufficient
power to detect small but important effects. Earlier, it was noted that
the effects of taking aspirin on heart attacks are relatively small, but
there is still a substantial payoff for taking the drug. If the initial re-
search that led to the use of aspirin for this purpose had been con-
ducted using small samples, then the researchers would have had
little chance of detecting this life-saving effect.

Determining the Desired Level of Power

In determining desired levels of power, the researcher must weigh the
risks of running studies without adequate power against the re-
sources needed to attain high levels of power. You can always achieve
high levels of power by using very large samples, but the time and ex-
pense required may not always justify the effort.

There are no hard and fast rules about how much power is enough,
but there does seem to be consensus about two things. First, if at all
possible, power should be above .50. When power drops below .50, the
study is more likely to fail (i.e., it is unlikely to reject the null hypothe-
sis) than to succeed. It is hard to justify designing studies in which fail-
ure is the most likely outcome. Second, power of .80 or above is usually
judged to be adequate. The .80 convention is arbitrary (in the same way
that significance criteria of .05 or .01 are arbitrary), but it seems to be
widely accepted, and it can be rationally defended.

Power of .80 means that success (rejecting the null) is four times as
likely as failure. It can be argued that some number other than four
might represent a more acceptable level of risk (e.g., if power = .90,
success is nine times as likely as failure), but it is often prohibitively
difficult to achieve power much in excess of .80. For example, to have a
power of .80 in detecting a small treatment effect (where the difference
between treatment and control groups is d = .20), a total sample of
about 775 subjects is needed. If researchers want power to be .95,
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they need about 1,300 subjects. Most power analyses specify .80 as
the desired level of power to be achieved, and this convention seems to
be widely accepted.

Applying Power Analysis

There are four ways to use power analysis: (a) in determining the sam-
ple size needed to achieve desired levels of power, (b) in determining
the level of power in a study that is planned or has already been con-
ducted, (c) in determining the size of effect that can be reliably de-
tected by a particular study, and (d) in determining sensible criteria
for statistical significance. The chapters that follow lay out the actual
steps in doing a power analysis, but it is useful at this point to get a
preview of the four potential applications of this method. Power analy-
sis can be used in:

1. Determining sample size: Given a particular ES, significance
criterion and a desired level of power, it is easy to solve for the sample
size needed. For example, if researchers think the correlation between
a new test and performance on the job is .30, and they want to have at
least an 80% chance of rejecting the null hypothesis (with a signifi-
cance criterion of .05), they need a sample of about 80 cases. When
planning a study, routinely use power analysis to help make sensible
decisions about the number of subjects needed.

2. Determining power levels: If N, ES, and the criterion for statisti-
cal significance are known, power analysis can be used to determine
the level of power for that study. For example, if the difference between
treatment and control groups is small (e.g., d = .20), there are 50 sub-
jects in each group, and the significance criterion is a = .01, then
power will be only .05! Researchers should certainly expect that this
study will fail to reject the null, and they might decide to change the de-
sign of their research considerably (e.g., use larger samples, more le-
nient criteria)

3. Determine ES levels: Researchers you can also determine what
sort of effect could be reliably detected, given N, the desired level of
power, and a. In the previous example, a study with 50 subjects in
both the treatment and control groups would have power of .80 to de-
tect a very large effect (approximately d = .65) with a .01 significance
criterion, or a large effect (d =.50) with a .05 significance criterion.

4. Determine criteria for statistical significance: Given a specific ef-
fect, sample size, and power level, it is possible to determine the sig-
nificance criterion. For example, if researchers expect a correlation
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coefficient to be .30, N = 67, and they want power to equal or exceed
.80, they will need to use a significance criterion of a = .10 rather than
the more common .05 or .01.

HYPOTHESIS TESTS VERSUS CONFIDENCE INTERVALS

Null hypothesis testing has been criticized on a number of grounds
(e.g., Schmidt, 1996), but perhaps the most persuasive critique is that
they provide so little information. It is widely recognized that the use
of confidence intervals and other methods of portraying levels of un-
certainty about the outcomes of statistical procedures have many ad-
vantages over simple null hypothesis tests (Wilkinson & Task Force on
Statistical Inference, 1999). For example, suppose a study is being
done that examines the correlation between scores on an ability test
and measures of performance in training. It find a correlation of r =
.30, and on the basis of a null hypothesis test, it is decided that this
value is significantly (e.g., at the .05 level) different from zero. That
test tells researchers something, but it does not really tell them
whether the finding that r = .30 represents a good or a poor estimate
of the relation between ability and training performance. A confidence
interval would provide that sort of information.

Staying with this example, suppose researchers estimate the amount
of variability expected in correlations from studies like theirs, and con-
clude that a 95% confidence interval ranges from .05 to .55. This confi-
dence interval would tell them exactly what they learned from the
significance test (i.e., that they could be pretty sure the correlation be-
tween ability and training performance was not zero), but it would also
tell then that r = .30 might not turn out to be a good estimate at all. An-
other researcher doing a similar study but using a larger sample might
find a much smaller confidence interval, indicating a good deal more
certainty about the generalizability of sample results.

As the previous paragraph above implies, most of the statements
that can be made about statistical power also apply to confidence
intervals. That is, if researchers design a study with low power, they
will also find that it produces wide confidence intervals (i.e., that
there is considerable uncertainty about the meaning of sample re-
sults). If they design studies to be sensitive and powerful, they will
yield smaller confidence intervals. Thus, although the focus is on
hypothesis tests, it is important to keep in mind that the same fac-
ets of the research design (N, the alpha level) that cause power to go
up or down also cause confidence intervals to shrink or grow. A
powerful study will not always yield precise results (e.g., power can
be high in a poorly designed study that examines a treatment that
has very strong effects), but in most instances, whatever is done to
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increase power will also lead to smaller confidence intervals and to
more precision in sample statistics.

CONCLUSIONS

Power is defined as the probability that a study will reject the null hy-
pothesis when it is in fact false. Studies with high statistical power
are very likely to detect the effects of treatments, interventions, and
so on, whereas studies with low power will often lead researchers to
dismiss potentially important effects as sampling error. The statisti-
cal power of a test is a function of the size of the treatment effect in the
population, the sample size, and the particular criteria used to de-
fine statistical significance. Although most discussions of power
analysis are phrased in terms of traditional null hypothesis testing,
where the hypothesis that treatments have no impact whatsoever is
tested, this technique can be fruitfully applied to any method of sta-
tistical hypothesis testing.

Statistical power analysis has received less attention in the behav-
ioral and social sciences than we think it deserves. It is still routine in
many areas to run studies with disastrously low levels of power. Re-
member that statistical power analysis can be used to determine the
number of subjects that should be included in a study, to estimate the
likelihood that the study will reject the null hypothesis, to determine
what sorts of effects can be reliably detected in a study, or to make ra-
tional decisions about the standards used to define statistical signifi-
cance. Each of these applications of power analysis is taken up in the
chapters that follow.



A Simple and General Model
for Power Analysis

This chapter develops a simple approach to statistical power analysis
that is based on the widely used F statistic. This statistic (or some
transformation of F) is used to test statistical hypotheses in the gen-
eral linear model (Horton, 1978; Tatsuoka, 1993b), a model that in-
cludes all of the variations of correlation and regression analysis
(including multiple regression), analysis of variance and covariance
(ANOVA and ANCOVA), t tests for differences in group means, tests of
the hypothesis that the effect of treatments takes on a specific value, or
a value different from zero. The great majority of the statistical tests
used in the social and behavioral sciences can be treated as special
cases of the general linear model.

This method is not the only approach to statistical power analysis.
For example, in the most comprehensive work on power analysis, J.
Cohen (1988) constructed power tables for a wide range of statistics
and statistical applications, using separate effect size measures and
power calculations for each class of statistics. Kramer and
Thiemann (1987) derived a general model for statistical power anal-
ysis based on the intraclass correlation coefficient, and developed
methods for expressing a wide range of test statistics in terms that
were compatible with a single general table based on the intraclass r.
Lipsey (1990) used the t test as a basis for estimating the statistical
power of several statistical tests.

22
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The idea of using the F distribution as the basis for a general system of
statistical power analysis is hardly an original one; Pearson and Hartley
(1951) proposed a similar model over 50 years ago. It is useful, however,
to lay out the rationale for choosing the F distribution in some detail, be-
cause the family of statistics based on F have a number of characteristics
that help to take some of the mystery out of power analysis.

Basing a model for statistical power analysis on the F statistic pro-
vides an optimal balance between applicability and familiarity. First,
the F statistic is ubiquitous. This chapter and the next show how to
transform a wide range of test statistics and effect size measures into
F statistics, and how to use those F values in statistical power analy-
sis. Because such a wide range of statistics can be transformed into F
values, structuring power analysis around the F distribution allows
coverage of a great deal of ground with a single set of tables.

Second, the approach developed here is flexible. Unlike other pre-
sentations of power analysis, this discussion does not limit itself to
tests of the traditional null hypothesis (i.e., the hypothesis that treat-
ments have no effect whatsoever). This particular type of test has been
roundly criticized (J. Cohen, 1994; Meehl, 1978; Morrison & Henkel,
1970), and there is a need to move beyond such limited tests. Discus-
sions of power analysis consider several methods of statistical hypothe-
sis testing, and show how power analysis can be easily extended beyond
the traditional framework in which the possibility that treatments have
no effect whatsoever is tested. In particular, this discussion shows how
the model developed here can be used to evaluate the power of mini-
mum-effect hypothesis tests (i.e., tests of the hypothesis that the effects
of treatments exceed some predetermined minimum level).

Recently, researchers have devoted considerable attention to al-
ternatives to the traditional null hypothesis test (e.g., Murphy &
Myors, 1999; Rouanet, 1996; Serlin & Lapsley, 1985, 1993), focus-
ing in particular on tests of the hypothesis that the effect of treat-
ments falls within or outside of some range of values. For example,
Murphy and Myors (1999) discussed alternatives to tests of the tra-
ditional null hypothesis that involve specifying some range of ef-
fects that would be regarded as negligibly small, and then testing
the hypothesis that the effect of treatments falls within this range
(H0) or falls above this range (H1—i.e., the effects of treatments are
so large that they can not reasonably be described as negligible).
The F statistic is particularly well-suited to such tests. This statis-
tic ranges in value from zero to infinity, with larger values accompa-
nying stronger effects. As is shown in sections that follow, this
property of the F statistic makes it easy to adapt familiar testing
procedures to evaluate the hypothesis that effects exceed some min-
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imum level, rather than simply evaluating the possibility that treat-
ments have no effect at all.

Finally, the F distribution explicitly incorporates one of the key
ideas of statistical power analysis (i.e., that the range of values that
might be expected for a variety of test statistics depends in part on the
size of the effect in the population). As is explained later, the notion of
effect size is reflected very nicely in one of the three parameters that
determines the distribution of the statistic F (i.e., the so-called
noncentrality parameter).

THE GENERAL LINEAR MODEL, THE FSTATISTIC, AND EFFECT SIZE

Before exploring the F distribution and its use in power analysis, it is
useful to briefly describe the key ideas in applying the general linear
model as a method of structuring statistical analyses, show how the F
statistic is used in testing hypotheses according to this model, and de-
scribe a very general index of whether treatments, interventions, tests,
and so on have large or small effects.

Suppose that 200 children are randomly assigned to one of two
methods of reading instruction. Each child receives this instruction,
either accompanied by audiovisual aids (e.g., computer software
that "reads" to the child while showing pictures on a screen) or with-
out the aids. At the end of the semester, each child's performance in
reading is measured.

One way to structure research on the possible effects of reading in-
struction methods and/or audiovisual aids is to construct a mathe-
matical model to explain why some children read well and others read
poorly. This model might take a simple additive form:

where:

yljk = the score of child k, who received instruction
method i and audio-visual aid j
ai = the effect of the method of reading instruction
bj= the effect of audiovisual aids
abij = the effect of the interaction between method of

instruction and audiovisual aids
eijk = the part of the child's score that cannot be
explained by the treatments he or she received
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In a linear model of this sort, researchers might reasonably ask
several sorts of questions. First, it makes sense to ask whether the
effect of a particular treatment or combination of treatments is
large enough to allow them to rule out sampling error as an explana-
tion for why people receiving one treatment obtain higher scores
than people not receiving it. As is explained, the F statistic is well
suited for this purpose.

Second, it makes sense to ask whether the effects of treatments, in-
terventions, and so forth, are relatively large or relatively small. There
are a variety of statistics that might be used in answering this ques-
tion, but one very general approach is to estimate the percentage of
variance in scores (PV) that is explained by the various effects in-
cluded in the model. Regardless of the specific approach taken in sta-
tistical testing under the general linear model (e.g., analysis of
variance or covariance, multiple regression, t tests), the goal of the
model is always to explain variance in the dependent variable (i.e., to
help researchers understand why some children obtained higher
scores than others).

Linear models like the one shown divide the total variance in scores
into that which can be explained by methods and treatment effects
(i.e., the combined of effects of instruction audiovisual aids) and that
which cannot be explained in terms of the treatments received by sub-
jects. The percentage of variance (PV) associated with each effect in a
linear model provides one very general measure of whether treatment
effects are large or small (i.e., whether they account for a lot of the vari-
ance in the dependent variable or only a little), and the value of PV is
closely linked to F.

There are a number of specific statistics used in estimating PV, nota-
bly h2 (eta squared) and R2, which are typically encountered in the con-
texts of the analysis of variance and multiple regression, respectively.
The more general term PVis preferred, because it refers to a general in-
dex of the effects of treatments or interventions, not to any specific sta-
tistic or statistical approach. As we will shown later, estimates of PV are
extremely useful in structuring statistical power analyses for virtually
any of the specific applications of the general linear model.

THE FDISTRIBUTION AND POWER

Taking the ratio of two independent estimates of the variance in a pop-
ulation (e.g., s,2! and s 2

2), this ratio is distributed as F, where:
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This F ratio can be used to test a wide range of statistical hypothe-
ses (e.g., testing for the equality of means and variances). In the gen-
eral linear model, the F statistic is used to test the null hypothesis
(e.g., that the means are equal across treatments), by comparing some
measure of the variability in scores due to the treatments to some
measure of the variability in scores that might be expected as a result
of simple sampling error. In its most general form, the F test in general
linear models is:

The distribution of the statistic F is complex, and depends in part
on both the degrees of freedom of the hypothesis or effect being tested
(dfhyp) and the degrees of freedom for the estimate of error used in the
test (dferr). If treatments have no effect whatsoever, then the expected
value of F is dferr /(dferr - 2), which is very close to 1.0 for values of dferr
much greater than 10. That is, if the traditional null hypothesis is true
(i.e., treatments have no effect whatsoever), then expect to find F ra-
tios of about 1.0. However, as noted earlier, also expect some variabil-
ity, because of sampling error, in the F values actually obtained, even if
the null hypothesis is literally true. Depending on the degrees of free-
dom (dfhyp and dferr), the F values that would be expected if the null hy-
pothesis is true might cluster closely around 1.00, or they might vary
considerably. The F tables shown in most statistics textbooks provide
a sense of how much these values might vary strictly as a function of
sampling error, given various combinations of dfhyp and dferr.

Finally, it is useful to note that the F and chi-squared distribu-
tions are closely related (the ratio of two chi-squared variables,
each divided by its degrees of freedom, is distributed as F), and
both distributions are special cases of a more general form (the
gamma distribution).

The Noncentral F

Most familiar statistical tests are based on the central F distribution
(i.e., the distribution of F statistics expected when the traditional null
hypothesis is true). However, as noted earlier, interventions or treat-
ments normally have at least some effect, and the distribution of F val-
ues that would be expected in any particular study is likely to take the
form of a noncentral F distribution. The power of a statistical test is
defined by the proportion of that noncentral F distribution that ex-
ceeds the critical value used to define statistical significance. The
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shape and range of values in the noncentral F distribution is a func-
tion of both the degrees of freedom (dfhyp and dferr) and the
noncentrality parameter ( l ) . One way to think of the noncentrality pa-
rameter is that it is a function of just how wrong the traditional null hy-
pothesis is. When A = 0 (i.e., when the traditional null hypothesis is
true), the noncentral F is identical to the central F that is tabled in
most statistics texts.

The exact value of the noncentrality parameter is a function of both the
effect size and the sensitivity of the statistical test (which is largely a func-
tion of the number of observations, N). For example, in a study where n
subjects are randomly assigned to each of four treatment conditions, A =
( lS(mj - m)2)/ s2

e , where mj and m represent the population mean in treat-
ment group j and the population mean over all four treatments, and s2

e
represents the variance in scores due to sampling error. Horton (1978)
noted that in many applications of the general linear model:

where lest represents an estimate of the noncentrality parameter,
SSeffect represents the sum of squares for the effect of interest, and MSe
represents the mean square error term used to test hypotheses about
that effect. Using PV to designate the proportion of the total variance in
the dependent variable explained by treatments (which means that 1 -
PV refers to the proportion not explained), the noncentrality parame-
ter can be estimated with the following equation:

Equations 4 and 5 provide a practical method for estimating the
value noncentrality parameter in a wide range of applications of the
general linear model.1

1Equations 4 and 5 are based on simple linear models, in which there is only one ef-
fect being tested, and the variance in scores is assumed to be due to either the effects of
treatments or to error (e.g., this is the model that underlies the t test or the one-way
analysis of variance). In more complex linear models, dferr does not necessarily refer to
the degrees of freedom associated with variability in scores of individuals who receive
the same treatment (within-cell variability in the one-way ANOVA model), and a more
general form of Equation 5 ( le s t = [ ( N - k) * (PV/( 1 - PV))], where N represents the num-
ber of observations and k represents the total number of terms in the linear model) is
needed. When N is large, Equation 5 yields very similar results to those of the more gen-
eral form shown earlier.
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The noncentrality parameter reflects the positive shift of the F dis-
tribution as the size of the effect in the population increases (Horton,
1978). For example, if N subjects are randomly assigned to one of k
treatments, the mean of the noncentral F distribution is approxi-
mately [(N - k/N - k - 2)/(l + l/(k - 1))], as compared to an approxi-
mate mean of 1.0 for the central F distribution. More concretely,
assume that 100 subjects are assigned to one of four treatments. If
the null hypothesis is true, then the expected value of F is approxi-
mately 1.0. However, if the effect of treatments is in fact large (e.g., PV
= .25), expect to find F values substantially larger than 1.0 most of
the time; here expect F values closer to 11.9 than to 1.0. In other
words, if the true effect of treatments is large, expect to find large F
values most of the time.

The larger the effect, the larger the noncentrality parameter, and
the larger the expected value of F. The larger the F, the more likely
that H0 will be rejected. Therefore, all other things being equal, the
more noncentrality (i.e., the larger the effect or the larger the N), the
higher the power.

Using the Noncentral F Distribution to Assess Power

Chapter 1 laid out the three steps in conducting a statistical power
analysis (i.e., determine critical value for significance, estimate effect
size, estimate proportion of test statistics likely to exceed critical
value). If we apply these steps are applied here, it follows that power
analysis involves:

1. Deciding what value of F is needed to reject H0. As dis-
cussed later in this chapter, this depends in part on the spe-
cific hypothesis being tested

2. Estimating the effect size and the degree of noncentrality.
Estimates of PV allow the estimation of the noncentrality
parameter of the F distribution.

3. Estimating the proportion of the noncentral F that lies
above the critical F from Step 1.

In the following chapters, a simple method of conducting power
analyses, based on the noncentral F distribution, is presented that
may be used for a range of hypotheses. Appendix A discusses ap-
proaches to approximating the noncentral F distribution. Appendix B
presents a table of F values obtained by estimating the noncentral F
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distribution over a range of dfhyp, dferr, and effect size values.2 This ta-
ble eliminates the difficulty of estimating noncentral F values, and
more important, of directly computing power estimates for each sta-
tistical test performed. This table can be used to test both traditional
and minimum-effect null hypotheses, and to estimate the statistical
power of tests of both types of hypotheses.

A Note on Approximations

The methods described here are simple and general, but they are not
always precise to the last decimal place. There are many statistical
procedures that fall under the general linear model umbrella, and
some specific applications of this model may present unique compli-
cations or distributional complexities. However, the methods devel-
oped here provide acceptably accurate approximations for the entire
range of statistical tests covered under this general model. Approxi-
mations are particularly appropriate for statistical power analysis
because virtually all applications of this technique are themselves
approximations (because the exact value of the population effect size
is rarely known for sure). That is, real-world applications of power
analysis rarely depend on precise estimates, but rather depend on
obtaining reasonable estimates to help inform decision-makers.
Thus, a good approximation is quite acceptable.

For example, power analysis might be used to guide the selection
of sample sizes or significance criteria in a planned study. Power
analysis typically functions as a decision aid rather than as a pre-
cise forecasting technique, and it is rare that different decisions will
be reached when exact versus approximate power values are
known. That is, users of power analysis are likely to reach the same
decisions if they know that power is about .80 in a particular study
as they would reach if they knew that the power was precisely .815
for that study.

Statistical power analysis is an area where precision is not of suf-
ficient value to justify the use of cumbersome methods in pursuit of
the last decimal place. As a result, it is possible to use the general
method developed here to approximate, with a high degree of preci-
sion, the more specific findings that are obtained when power anal-
yses are tailored to specific analytic techniques (see J. Cohen,

2As noted in Appendix A, all tables presented in this book are based on the cumulative
distribution function for the noncentral F. The precision of these tables has been assessed
extensively, and the values presented in these tables allows reconstruction of with consider-
able accuracy, the power tables presented by J. Cohen (1988) and in other standard works.
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1988, for discussions of power analysis for each of several types of
statistical tests). This approach allows researchers to estimate sta-
tistical power for statistical tests in the general linear model, by
translating specific test statistics or effect size measures into their
equivalent F values.

TRANSLATING COMMON STATISTICS AND EFFECT SIZE MEASURES INTO F

The model developed here is expressed in terms of the F statistic,
which is commonly reported in analysis of variance and multiple re-
gression. However, many studies report their results in terms of
something other than an F value. It is useful, therefore, to have at hand
formulas for translating common statistics and effect size measures
(e.g., d) into their F equivalents. Table 2.1 presents a set of formulas
for doing just that.

TABLE 2.1

Translating Common Statistics Into F Equivalent Values

Degrees of
Freedom

Statistic F equivalent dfhyphyp dferr

t test for difference
between means

Correlation coefficient

Multiple R2

Hierarchical regression

Chi-square (x2)

Standardized mean
difference (d)

d (repeated measures)

JV-2

J V - 2

p N-p-1

k N-p-1

dfhyp

J V - 2

J V - 2
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For example, a study compared the effectiveness of two smoking
cessation programs in a sample of 120 adults, who are randomly as-
signed to treatments, and used the t test to compare scores in these
two groups. The reported t value of 2.48 would be equivalent to an F
value of 6.15, with 1 and 118 degrees of freedom. A study (N = 112)
that reported a multiple correlation of .45 between a set of four voca-
tional interest tests and occupational choice measure would yield an F
value of 9.06, with 3 and 107 degrees of freedom.

Hierarchical regression is used to determine the incremental contri-
bution of k new predictor variables over and above the set of predictor
variables already in an equation. For example, in a study with N = 250,
two spatial ability tests were used to predict performance as an aircraft
pilot; scores on these tests explained 14% of the variability in pilots'
performance (i.e., R2 = .14). Four tests measuring other cognitive abili-
ties were added to the predictor battery, and this set of six tests ex-
plained 29% of the variance in performance (i.e., R2 = .29). The F
statistic that corresponds to this increase in R2 is F(4, 243) = 12.83.

As Table 2.1 shows, X2 values can be translated in F equivalents. For
example, if you found a X2 value of 24.56 with 6 degrees of freedom, the
equivalent F value is 4.10, with dfhyp = 6 and dferr being infinite. Because
the F table asymptotes as dferr grows larger, dferr = 10,000 (which is in-
cluded on the F Table listed in Appendix B) represents an excellent ap-
proximation to infinite degrees of freedom for the error term.

Table 2.1 also includes the effect size measure d. This statistic is
not commonly used in hypothesis testing per se, but it is widely
used in describing the strength of effects, particularly when the
scores of those treatment is compared to scores in a control group.
Suppose that previous research suggests that the effect size d
should be about .25. A study in which 102 subjects were randomly
assigned to one of two treatments would be expected to yield an F
value of 1.56, with 1 and 100 degrees of freedom. If d is .50, then an
F value of 6.25 would be expected. If you used a repeated measures
design was used (e.g., one in which scores of 101 subjects on a pre-
test and a posttest were compared, with a correlation of .60 be-
tween these scores), F would be 9.78.

In the aforementioned examples, the sample size has been in-
cluded. The reason for this is that the value and the interpretation of
the F statistic depends in part on the size of the sample (in particular,
on the degrees of freedom for the error term, or dferr). In the preceding
paragraph, a d value of .25 in a sample of 102 would yield F (1,100) =
1.56. In a sample of 227, the same d would translate into F (1,225) =
3.52. This reflects the fact that the same difference between means is
easier to statistically detect when the sample (and therefore dferr) is
large than when the sample is small. Small samples produce unstable
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and unreliable results, and in a small sample it can be hard to distin-
guish between true treatment effects and simple sampling error.

Finally, a note concerning terminology. The previous section and
several sections that follow use the term "F equivalent." This term is
meant to be explicit in recognizing that even when the results of a sta-
tistical test in the general linear model are reported in terms of some
statistic other than F (e.g., r, t, d), it is nevertheless very often possible
to the F value that is equivalent in meaning.

Transforming from F to PV

Table 2.1 shows how to transform commonly used statistics and effect
size estimates into their equivalent F values. It may also be used to
transform from F values to an equivalent effect size measure. For ex-
ample, suppose that researchers used analysis of variance to analyze
their data, reported a significant F value, but did not provide informa-
tion about the strength of the effect. Equations 6 and 7 allow them to
obtain an estimate of the proportion of variance in the dependent vari-
able explained by the linear model (i.e., PV), given the value of F:

TheJ2 in formulations 6 and 7 is the squared value of the effect size
estimator f discussed in J. Cohen (1988). For example, if a study re-
ports F (3,60) = 2.80, this implies that treatments account for about
12% of the variance in the dependent variable. As seen later in this
chapter, formulas for transforming effect size estimates to their F
equivalents, or F values to equivalent effect size estimates, are ex-
tremely useful in conducting power analyses.

Equations 6 and 7 can be combined into a single, simple formula
for estimating PV on the basis of F and degrees of freedom:
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As noted in chapter 5, this equation cannot not be used in complex,
multifactor analysis of (ANOVA) variance designs, because the F sta-
tistic for any particular effect in a complex ANOVA model and its de-
grees of freedom do not contain all of the information needed to
estimate PV. However, that chapter shows how to generalize a formula
very similar to that shown in Equation 7 to complex ANOVA studies.

Nonporametric and Robust Statistics

The decision to anchor this discussion to statistical power analysis to
the F distribution is driven primarily by the ubiquitousness of statisti-
cal tests based on that distribution. The F statistic can be used to test
virtually any hypothesis that falls under the broad umbrella of the gen-
eral linear model, but there are some important statistics that do not
fall under this umbrella, and are not handled by the model developed
and discussed here.

For example, a number of robust, or "trimmed," statistics have
been developed in which outliers are removed from observed distri-
butions prior to estimating standard errors and test statistics (Wilcox,
1992; Yuen, 1974). Trimming outliers can sometimes substantially
reduce the effects of sampling error, and trimmed statistics can have
more power than their normal theory equivalents (Wilcox, 1992). The
power tables developed in this book are not fully appropriate for
trimmed statistics, and can substantially underestimate the power of
these statistics when applied in small samples.

A second family of statistics that is not easily accommodated using the
model developed here are those statistics referred to as nonparametric.
In general, nonparametric statistics do not make a priori assumptions
about distributional forms, and tend to use little information about the
observed distribution of data in constructing statistical tests. The con-
ventional wisdom has long been that nonparametric tests have less
power than their parametric equivalents (Siegel, 1956), but this is not al-
ways the case. Nonparametric tests can have more power than their
parametric equivalents under a variety of circumstances, especially
when conducting tests using distributions with heavy tails (Zimmerman
& Zumbo, 1993). The methods developed here provide only gross ap-
proximations when used to assess the power of robust or nonparametric
equivalents of standard statistical tests.

ALTERNATIVES TO THE TRADITIONAL NULL HYPOTHESIS

The traditional null hypothesis is that treatments, interventions, and
so on have no effect. There are two advantages to testing this hypothe-
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sis: (a) It is easy (tests of this hypothesis are the standard fare for sta-
tistics courses, textbooks, data analysis packages, etc.), and (b) if the
hypothesis that treatments have no effect is rejected, then researchers
are left with the alternative that they have some effect. However, as
noted earlier, this approach to statistical analysis has increasingly
come under attack (J. Cohen, 1994; Meehl, 1978; Morrison & Henkel,
1970; Murphy, 1990; Schmidt, 1992, 1996. For discussions of the ad-
vantages of this approach, see Chow, 1988; Cortina & Dunlap, 1997;
Hagen, 1997). The most general criticism of this approach is that no-
body actually believes the null hypothesis. That is, it is rare to encoun-
ter treatments, interventions that have no effect whatsoever, which is
the traditional null hypothesis. By definition, the traditional null hy-
pothesis is usually quite likely to be false, which means that tests of
this hypothesis are not necessarily meaningful (Murphy, 1990).

Second, the outcomes of tests of the traditional null hypothesis are
routinely misinterpreted. As noted later, the outcomes of standard
statistical tests probably say more about the power of the study than
about the phenomenon being studied!

Why h the Traditional Null Hypothesis Almost Always Wrong?

The traditional null hypothesis is formally wrong because it is a point
hypothesis. That is, the hypothesis being tested is that the effect of
treatments is exactly nil, even to the millionth decimal place or be-
yond. A treatment that has an obviously negligible effect will neverthe-
less lead to the rejection of the traditional null, as long as a test with
sufficient statistical power is carried out.

The traditional null hypothesis represents a convenient abstrac-
tion, similar to the mythical "friction-less plane" encountered by
freshmen in solving physics problems, in which small effects are
treated as zero for the sake of simplicity. There are many real-world
phenomena that seem to mirror the traditional null hypothesis, the
most obvious being flipping a coin (see Pick, 1995, for examples that
seem to show how the traditional null could be correct). However, even
in studies that involved repeated flips of a fair coin, the traditional null
is, by definition, wrong. The traditional null hypothesis is that there is
no difference whatsoever in the probability of getting a head or a tail.
In fact, it is impossible to mill a coin that is so precisely balanced that
this will be true. Even if it is balanced to the billionth of the ounce, the
traditional null is still wrong. Imbalance at the ten-billionth of the
ounce will lead to rejection of traditional null if the coin is flipped a
sufficient number of times.

The traditional null hypothesis is virtually always wrong because
it is infinitely precise, whereas none of the real-world phenomena it
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is designed to test can possibly reach that level of precision. The
same can be said for any point hypothesis (e.g., the hypothesis that
the difference between two methods of reading instruction is exactly
6 points). The argument against the traditional null is not only a
philosophical one; there are also abundant data to suggest that treat-
ments in the social and behavioral sciences virtually always have at
least some effect (Lipsey& Wilson, 1993; Murphy &Myors, 1999). In
fact, it may not be possible to devise a real treatment that has no ef-
fect whatsoever; the hypothesis that treatments have no effect is so
unlikely to be true that tests of this hypothesis are sometimes point-
less (Murphy, 1990).

The fact that the traditional null hypothesis is virtually always wrong
has important implications for thinking about Type I and Type II errors.
If the null hypothesis is wrong, it is impossible to make a Type I error
(i.e., to reject H0 when it is true), and the only error that can occur is a
Type II error (i.e., failing to reject H0 when necessary). If researchers ac-
cept the position that the traditional null hypothesis is virtually never
true, then it follows that they should be much more concerned with sta-
tistical power than with controlling of Type I errors.

Significance Tests are Routinely Misinterpreted

Another criticism of the traditional null hypothesis is that showing
that a result is "significant" at the .05 level does not necessarily imply
that it is important or it is especially likely to be replicated in a future
study (J. Cohen, 1994). It merely shows that the particular findings
being tested would probably not have been found if the true effect of
treatments was zero. Unfortunately, researchers routinely misinter-
pret the results of these tests (J Cohen, 1994; Cowles, 1989; Green-
wald, 1993). This is entirely understandable; most dictionary
definitions of "significant" include synonyms such as "important" or
"weighty." However, these tests do not directly assess the size or im-
portance of treatment effects.

Tests of the traditional null hypothesis are more likely to tell
about the sensitivity of the study than about the phenomenon being
studied. With large samples, statistical tests of the traditional null
hypothesis become so sensitive that they can detect the slightest dif-
ference between a sample result and the specific value that charac-
terized the null hypothesis, even if this difference is negligibly
small. With small samples, on the other hand, it is difficult to estab-
lish that anything has a statistically significant effect. The best way
to get an appreciation of the limitations of traditional null hypothe-
sis tests is to scan the tables in any power analysis book (J. Cohen,
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1988). It becomes clear that, regardless of the true strength of the
effect, the likelihood of rejecting the traditional null hypothesis is
very small when samples are small, and is virtually certain when
samples are large. Clearly, there is a need for approaches to signifi-
cance testing that tell more about the phenomenon being studied
than about the size of the samples. Alternatives to traditional null
hypothesis tests are described next.

MINIMUM-EFFECT TESTS AS ALTERNATIVES TO TRADITIONAL NULL HYPOTHESIS TESTS

The arguments outlined have led some critics to call for abandoning
null hypothesis testing altogether. But, rather than take this drastic
step, it is better to reform the process. The problem with most null hy-
potheses is that the specific hypothesis being tested (i.e., that treat-
ments have no effect whatsoever) is neither credible nor informative
(Murphy, 1990); J. Cohen (1994) dismissed this approach as testing
the "nil hypothesis." As noted earlier, there are several alternatives to
testing the nil hypothesis, and all of these are a marked improvement
over the standard procedure of testing the hypothesis that the effects
of treatments is precisely zero. Serlin and Lapsley (1993) showed how
to test the hypothesis that the effect of treatments falls within or out-
side of some range of values that is "good enough" to establish that one
treatment is meaningfully better than the other. Rouanet (1996) dem-
onstrated how Bayesian methods can be used to assert the impor-
tance or negligibility of treatment effects. Both of these methods allow
for direct testing of credible and meaningful hypotheses.

The method proposed here is simply to shift the null distribution
slightly. Instead of using a central distribution to represent the null hy-
pothesis, use a noncentral one instead by setting the effect-size com-
ponent of the noncentrality parameter to a small, nonzero effect.
Then, when you rejecting H0, researchers are rejecting the null hy-
pothesis that their effect is negligibly small, rather than that it is pre-
cisely zero. As argued earlier, treatments are very unlikely to have a
zero effect, but they may be negligible.

There is much to be learned by conducting tests of a substantive
null hypothesis, such as the hypothesis that effects of treatments are
negligibly small (e.g., they account for 1 % or less of the variance in out-
comes). In contrast to tests of the traditional null, tests of this sort are
far from trivial (i.e., it is not known in advance whether H0 is wrong),
and they involve questions of real substantive interest. First, because
they include some range of values rather than a single exact point un-
der the "null umbrella," the results of these tests are not a foregone
conclusion. Although it might be impossible to devise a treatment, in-
tervention, and so on that had no effect whatsoever, there are any
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number of treatments whose effects fall somewhere between zero and
whatever point is chosen to designate as a negligible effect. The possi-
bility that your treatments will have a negligibly small effect is both
real and meaningful (whereas the possibility that they will have no ef-
fect whatsoever is not), and researchers can learn something impor-
tant about their treatments by testing this hypothesis.

As noted earlier, when testing the traditional null hypothesis, the out-
come if can be guaranteed if the sample is sufficiently large. That is,
with a sufficiently sensitive study, the statistical power of tests of the
traditional null hypothesis can reach 1.00. The same is not true when
testing the hypothesis that the effect of treatment exceeds some negligi-
ble minimum. Because there is a real possibility that the effect of treat-
ments will not exceed that minimum, the upper bound of the power of
these alternative tests will generally be lower than 1.00. No matter how
good the study, researchers will never be certain in advance of the result
of such a test. This may be regarded as a good thing. One major criti-
cism of tests of the traditional null is that they are literally pointless
(Murphy, 1990). Because it is known in advance that the traditional H0
is wrong, nothing new is learned about H0, regardless of the outcome of
the significance test. Minimum-effect tests, on the other hand, can be
informative, particularly if they have acceptable levels of statistical
power. If there is a great deal of power and the test still fails to reject the
hypothesis that a treatment effect is at best negligible, this would be re-
garded as strong evidence that the effect is negligible.

Testing the Hypothesis That Treatment Effects are Negligible

The best way to describe the process of testing a minimum-effect hy-
pothesis is to compare it to the process used in testing the traditional
null. The significance of the F statistic is usually assessed by compar-
ing the value of the F obtained in a study to the value listed in an F ta-
ble. The tabled values correspond to specific percentiles in the central
F distribution. For example, if dfhyp = 2 and dferr =100, the tabled val-
ues of F are 3.09 and 4.82, for a = .05 and a = .01, respectively. In
other words, if the null hypothesis is true and there are 2 and 100 de-
grees of freedom, then researchers should expect to find F values of
3.09 or lower 95% of the time, and values of 4.82 or lower 99% of the
time. If the F in the study is larger than these values, researchers will
reject the null hypothesis and conclude that treatments probably do
have some effect.

Tests of minimum-effect hypotheses proceed in exactly the same
way, only using a different set of tabled F values (Murphy & Myors,
1999). The F tables found in the back of most statistics texts are based
on the central F distribution, or the distribution of the F statistic that
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would be expected if the traditional null hypothesis were true. Tests of
minimum-effect hypotheses are based on a noncentral F distribution.
For example, suppose it is decided that treatments that account for
1% or less of the variance in outcomes have a "negligible" effect. It is
then possible to estimate a noncentrality parameter (based on PV =
.01), and to estimate the corresponding noncentral F distribution for
testing the hypothesis that treatment effects are at best negligible. If
PV = .01, dfhyp = 2, and dferr =100, then 95% of the values in this
noncentral F distribution will fall at or below 4.49; 99% of the values
in this distribution will fall at or below 6.76 (as noted later, F values
for testing minimum-effect hypotheses are listed in Appendix B). In
other words, if the observed F in the study was greater than 4.49, re-
searchers could be confident (a = .05) in rejecting the hypothesis that
treatments accounted for 1% or less of the variance. Later in this
chapter, we discuss standards that might be used in designating ef-
fects as negligible are discussed.

Minimum-effect hypotheses involve specifying a whole range of val-
ues as negligible. In the previous example, effects that account for 1%
or less of the variance in the population were designated as negligible
effects, and if researchers can reject the hypothesis that the effects are
negligibly small, they are left with the alternative hypothesis that they
are not negligibly small (i.e., that treatment effects are large enough to
care about). But how does a single critical F value allows for testing of
a whole range of null possibilities? Remember that one characteristic
of the F statistic is that it ranges from zero to infinity, with larger F val-
ues indicating larger effects. Therefore, if researchers can be 95% con-
fident that the observed F is larger than the F that would have been
obtained if treatments accounted for 1% of the variance, then they can
also be at least 95% confident that the observed F would be larger than
that which would have been obtained for any PV value between .00 and
.01. If the observed F is larger than the F values expected 95% of the
time when PV =.01, then it must also be larger than 95% of the values
expected for any smaller PV value.

An Example

Suppose 125 subjects are randomly assigned to one of five treat-
ments. It is found that F(4, 120) = 2.50, and in this sample, treat-
ments account for 7.6% of the variance in the dependent variable. The
F is large enough to allow for the rejection of the traditional null hy-
pothesis (a = .05), but there is concern that the true effect of treat-
ments might be negligibly small. Suppose also that in this context,
treatments that account for less than 1% of the variance in the popula-
tion have effects considered to be negligible. To test the hypothesis
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that the effects observed here came from a population in which the
true effect of treatments is negligibly small, consult the noncentral F
distribution with dfhyp = 4, dferr = 120, and l, = 1.21 (i.e., lest = [ 120 *
.01 ]/[ 1 - .01 ]). It would be found that 95% of the values in this distribu-
tion are 3.13 or lower. The obtained F is 2.50, which is smaller than
this critical value, and means that this null hypothesis cannot be re-
jected. That is, although researchers can reject the hypothesis that
treatments have no effect whatsoever (i.e., the traditional null), they
cannot reject the hypothesis that the effects of treatments are negligi-
bly small (i.e., a minimum-effect hypothesis that treatments account
for less than 1% of the variance in outcomes).

Defining a Minimum Effect

The main advantage of the traditional null hypothesis is that it is sim-
ple and objective. If researchers reject the hypothesis that treatments
have no effect, they are left with the alternative that they have some ef-
fect. On the other hand, testing minimum-effect hypotheses requires
value judgments, and requires that some consensus be reached in a
particular field of inquiry. For example, the definition of a negligible ef-
fect might reasonably vary across areas, and there may be no set con-
vention for defining which effects are so small that they can be
effectively ignored and those that cannot be ignored. An effect that
looks trivially small in one discipline might look pretty good in an-
other. However, it is possible to offer some broad principles for deter-
mining when effects are likely to be judged negligible.

First, the importance of an effect should depend substantially on
the particular dependent variables involved. For example, in medical
research it is common for relatively small effects (in terms of the per-
centage of variance explained) to be viewed as meaningful and impor-
tant (Rosenthal, 1993). One reason is that the dependent variables in
these studies often include quality of life, and even survival. A small
percentage of variance might translate into many lives saved.

Second, decisions about what effects should be labeled as negligible
might depend on the relative likelihood and relative seriousness of
Type I versus Type II errors in a particular area. As noted in a later sec-
tion, the power of statistical tests in the general linear model decreases
as the definition of a negligible effect expands. In any particular study,
power is higher for testing the traditional null hypothesis that treat-
ments have no effect than for testing the hypothesis that they account
for 1% or less of the variance in outcomes, and higher for tests of the hy-
pothesis that treatments account for 1% or less of the variance than for
the hypothesis that treatments account for 5% or less of the variance in
outcomes. If Type II errors are seen as particularly serious in a particu-
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lar area of research, then it might make sense to choose a very low fig-
ure as the definition of a negligible effect.

On the other hand, there are many areas of inquiry in which numer-
ous well-validated treatments are already available (See Lipsey & Wil-
son, 1993, for a review of numerous meta-analyses of treatment
effects), and in these areas, it might make sense to "set a higher bar" by
testing a more demanding hypothesis. For example, in the area of cog-
nitive ability testing (where the criterion is some measure of perfor-
mance on the job or in the classroom), it is common to find that tests
account for from 20% to 25% of the variance in the criterion (J. E.
Hunter & R. F. Hunter, 1984; J. E. Hunter & H. R. Hirsch, 1987). Tests
of the traditional null hypothesis (i.e., that tests have no relation what-
soever to these criteria) are relatively easy to reject; if p2 = .25, a study
with N = 28 will have power of .80 for rejecting the traditional null hy-
pothesis (J. Cohen, 1988). Similarly, the hypothesis that tests account
for 1% or less of the variance in these criteria is easy to reject; if p2 =
.25, a study with N = 31 will have power of .80 for rejecting this mini-
mum-effect hypothesis (Murphy & Myors, 1999). In this context, it
might make sense to define a negligible relation as one in which tests
accounted for 10% or less of the variance in these criteria.

Utility analysis has been used to help determine whether particular
treatments have effects that are large enough to warrant attention
(Landy, Farr, & Jacobs, 1982; Schmidt, J. E. Hunter, McKenzie, &
Muldrow, 1979; Schmidt, Mack, & J. E. Hunter, 1984). Utility equa-
tions suggest another important parameter that is likely to affect the
decision of what represents a negligible versus a meaningful effect
(i.e., the standard deviation of the dependent variable, or SDy). When
there is substantial and meaningful variance in the outcome variable
of interest, a treatment that accounts for a relatively small percentage
of variance might nevertheless lead to practical benefits that far ex-
ceed the costs of the treatment.

For example, suppose a training program costs $1,000 per person
to administer, and it is proposed as a method of improving perfor-
mance in a setting where the current SDy (i.e., the standard deviation
of performance) is $10,000. If the effects of training account for less
that 1% of the variation in job performance, then it might be con-
cluded that the projected cost of training will exceed the projected
benefit [based on the equation DU = rxy. SDy - C, where DU is the pro-
jected overall benefit, rxy is the relation between the training and the
criterion (in this case, PV = .01 translates into rxy= .10), and C repre-
sents the cost; see Landy, Farr & Jacobs, 1982], which suggests that
PV = .01 represents a sensible definition of the minimum effect
needed to label training effects as nontrivial.
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Many of the examples presented in this chapter and chapters that
follow use conventions similar to those described in J. Cohen (1988),
describing treatments that have less than 1 % of the variance as having
small effects, and those that account for less than 5% of the variance in
outcomes as having small to medium effects (these conventions are
discussed in detail later in this chapter). Many tables presented in this
book are arranged around these particular conventions. However, it is
critical to note that the decision of what represents a negligible effect is
one that is likely to vary across research areas, and there will be many
cases in which these particular conventions do not apply. Appendix A
presents the information needed to determine critical F values for
minimum-effect tests that employ some other operational definition
of negligible, and researchers are irged to carefully consider their rea-
sons for choosing any particular value as a definition of the minimum
effect of interest.

Power of Minimum-Effect Tests

As this example suggests, expect less power when testing the hypothe-
sis that the effect in the study exceeds some minimum value than
when testing the hypothesis that it is exactly zero. Switching from a
central to a noncentral distribution as the basis of a null hypothesis
necessarily increases the criterion for significance, thereby reducing
the proportion of the Hl distribution that lies above this value (i.e.,
power). The traditional hypothesis that treatments have no effect
whatsoever is by definition usually wrong (Murphy, 1990), and is
therefore relatively easy to reject. If the sample is large enough, re-
searchers will always reject the hypothesis that treatments have no ef-
fect, even if the true effect of treatments is extremely negligible. Tests
of the hypothesis that treatment effects exceed whatever lower bound
that is used to define negligible are more demanding than tests of the
traditional null, in part because there is always a chance that the ef-
fects are negligible. Therefore, there is no guarantee that the hypothe-
sis will be rejected, no matter how sensitive the study. However, as
noted in several of the chapters that follow, the lower power of sub-
stantive tests is easily offset by the fact that these tests tell something
meaningful, regardless of how large the sample size or how sensitive it
is possible to make the study.

ANALYTIC AND TABULAR METHODS OF POWER ANALYSIS

There are several methods available to carry out statistical power anal-
yses. First, it is possible to compute either the approximate or exact
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level of power in any particular case. Analytic methods of power analy-
sis are discussed next. Second, it is possible to develop tables or graphs
that provide good approximations of the statistical power of studies un-
der a wide range of conditions. Our preference is to work with tables, in
part because the type of graphs needed to plot a variable (i.e., power) as
a function of three other variables (i.e., IV, a, and ES) are complicated
and difficult to use. As is discussed later, it is possible to generate tables
that neatly integrate information about traditional and minimum-effect
hypothesis tests with information about statistical power.

Analytic Methods

The previous section demonstrated the analytic approach to power
analysis using either an approximation to or a relatively exact calcula-
tion of the noncentral F distribution. It is possible to apply this ap-
proach to calculate the power of any test that can be framed in terms of
the familiar F statistic. All this requires is a calculator and a fairly de-
tailed table of the widely used central F distribution (a table that only
gives critical values at the .05 and .01 levels will not always have the in-
formation needed to calculate power). Appendix A discusses several
methods of estimating values in the noncentral F distribution.

Although this analytic method is both precise and flexible, it is
also relatively cumbersome and time consuming. That is, the direct
computation of statistical power involves determining some stan-
dard for statistical or practical significance (e.g., setting a minimum
value for a negligible effect), estimating the noncentral F distribution
that applies, and determining the proportion of that distribution
that lies above the standard. Even with a relatively powerful com-
puter, the processes can be time consuming, and may be daunting to
many consumers of power analysis. A more user-friendly approach
is to develop tables that contain the essential information needed to
estimate statistical power.

Power Tables

A number of excellent books present extensive tables describing the
statistical power of numerous tests; J. Cohen (1988) is the most com-
plete source currently available. The approach described here is sim-
pler (although it provides a bit less information), but considerably
more compact. All of the information needed to do most significance
tests and power analyses for statistical tests in the general linear
model is presented in Appendix B, which contains what is called the
"One-Stop F Table." This is called a "one-stop" table because each cell
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contains the information needed for conducting traditional signifi-
cance tests, conducting power analyses at various key levels of power,
testing the hypothesis that the effect in a study exceeds various criteria
used to define negligibly small or small to moderate effects, and esti-
mating power for these minimum-effect tests.

USING THE ONE-STOP F TABLE

Each cell in the One-Stop F Table contains 12 pieces of information.
The first four values in each cell are used for testing significance and
estimating power for traditional null hypothesis tests. The next eight
values in each cell are used for testing significance and estimating
power when testing the hypothesis that treatment effects are negligi-
ble, using two different operational definitions of a negligible effect
(i.e., treatments account for 1% or less of the variance, or they account
for 5% or less of the variance).

To illustrate the use of this table, consider another study. Fifty-four
subjects are randomly assigned to one of four treatments. The treat-
ment being studied is one believed to have at least a moderate effect
(e.g., researchers expect treatments to account for about 15% of the
variance). It is found that F (3, 50) = 3.50, and treatments account for
17.3% of the variance in the sample.

Traditional Null Hypothesis Tests

The first four values in each cell of the One-Stop F table are used for
hypothesis testing and power analysis when testing the traditional
null hypothesis (i.e., that treatments have no effect). The first value
in each cell of this table represents the critical F for the traditional
null hypothesis significance test, with an alpha level of .05. In the
previous example, dfhyp = 3 and dferr = 50, which yields a critical F
of 2.79. If the observed F value in the study exceeds 2.79 (as was the
case here), H0 would be rejected. The second value in each cell is the
critical F for the traditional null hypothesis test at the .01 level of
significance (an F greater than or equal to 4.20 would be needed to
reject the traditional null hypothesis at the .01 level). The F of 3.50
found in the study would allow rejection of the traditional null with
a = .05, but not with a = .01.

The next two values in each cell are F equivalents of the effect size
values needed to obtain particular levels of power (given an a level of
0.05 and the specified dfhyp and dferr). The values in the table are 1.99
and 3.88, respectively, for power levels of .50 and .80, respectively. If
Equations 5 and 6 are used to transform these values into equivalent
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PVvalues, values of. 11 and . 19 are found, respectively. That is, there
would be a power of .50 for rejecting the traditional null if treatments
accounted for about 11% of the variance in the population, and
power of .80 if treatments accounted for about 19% of the variance.
In fact, it would be expected that the population effect is somewhere
between these two figures (i.e., treatments account for about 15% of
the variance), which implies that the power of the study is in the
range from .50 to .80. As shown later in this chapter, it is easy to esti-
mate where in this range the power of the study actually falls (in this
example, power is approximately .65).

Testing Minimum-Effect-Hypotheses (PV= .01)

Rather than testing the hypothesis that treatments have no effect what-
soever, researchers might want to test the hypothesis that treatment ef-
fects are so small that they account for less than 1% of the variance in
outcomes. If this PV value represents a sensible definition of a negligi-
ble effect in a particular area of research, and they test and reject this
hypothesis they can be confident that effects are not negligibly small.

The fifth and sixth values in each cell of the One-Stop F Table are
the critical F values that would be needed in order to achieve signifi-
cance (at the .05 and .01 levels, respectively) when testing the hypoth-
esis that treatments account for 1% or less of the variance in
outcomes. With dfhyp = 3 and d f e r r = 50, an F of 3.24 would be needed
to reject (with a = .05) the hypothesis that the effect being studied was
negligibly small (defined as accounting for 1% or less of the variance in
outcomes). The obtained F was 3.50, meaning that both the tradi-
tional null hypothesis and the hypothesis that the effect is negligibly
small can be rejected. However, if researchers use a .01 alpha level,
their obtained F will be smaller than the tabled F value of 4.85. With
an alpha level of .01, they will not be able to reject either the traditional
null or the hypothesis that the observed effect is negligibly small.

The seventh and eighth values in each cell are F equivalents of the ef-
fect size values needed to obtain particular levels of power (given an a
level of .05 and the specified dfhyp and d f e r r ) for testing this substantive
hypothesis. The values in the table are 2.46 and 4.48 for power levels of
.50 and .80, respectively. This translates into PV values of. 13 and .21,
respectively. That is, if treatments accounted for 13% of the variance in
the population, a study with dfhyp = 3, dferr =50, and a = .05 would have
power of about .50. If treatments account for 21% of the variance in the
population, then power would be approximately .80.

In this study, it was expected that treatments would account for
about 15% of the variance. This analysis suggests that the power for
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testing the hypothesis that the population effect is negligibly small is
somewhere between .50 and .80. Chapter 3 shows how to determine
where in this range the power of this study lies.

Testing Minimum-Effect Hypotheses (PV = .05)

There are many treatments that routinely demonstrate moderate to
large effects. For example, well-developed cognitive ability tests allow
for the prediction of performance in school and in many jobs with a
relatively high degree of success (correlations in the .30 - .50 range
are common). Rather than testing the hypothesis that tests have no re-
lation whatsoever with these criteria (i.e., the traditional null), or even
that treatments account for 1% or less of the variance in outcomes, it
might make sense to test a more challenging hypothesis (i.e., that the
effect of this particular treatment is at least small to moderate in size).
For reasons that are explained in the section that follows, there are
many contexts in which it is useful to test the hypothesis that treat-
ments explain 5% or less of the variance in the population. If research-
ers can test and reject the hypothesis that effects explain 5% or less of
the variance in outcomes, they are left with the alternative that treat-
ments explain more than 5% of the variance. In most contexts, effects
this large are likely to be treated as meaningful, even if smaller effects
(e.g., those accounting for 1% of the variance) are not.

The 9th and 10th values in each cell of the One-Stop F Table are the
critical F values needed in order to achieve significance (at the .05 and
.01 levels, respectively) when testing the hypothesis that treatments ac-
count for 5% or less of the variance in outcomes. With dfhyp = 3 and dferr
= 50, an F of 4.84 is necessary to reject (with a = .05) the hypothesis
that the effect being studied was no greater than small to moderate in
size. The obtained F was 3.50, meaning that it is impossible to reject this
hypothesis (if a = .01, you would need F = 6.98 to reject this null). In
other words, the findings of the study are not sufficiently strong to reject
the possibility that the real population effect is smaller than what has
been defined as the small to moderate range (i.e., PV = .05 or lower).

The 11th and 12th values in each cell are F equivalents of the effect
size values needed to obtain particular levels of power (given an a level
of 0.05 and the specified dfhyp and dferr) for tests of this minimum-ef-
fect hypothesis. The values in the table are 4.08 and 6.55 for power
levels of .50 and .80, respectively. This translates into PV values of .20
of and .28, respectively. The treatments were expected to account for
about 15% of the variance. This analysis suggests that the power for
testing the hypothesis that this population effect is small to moderate
(i.e., that it accounts for more than 5% of the variance in outcomes) is
well below .50. In other words, this particular study does not have suf-
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ficient power for a credible test of this hypothesis. With this combina-
tion of ES, sample size, and significance criteria, a significance test is
almost like the flip of a coin.

To review what this table reveals about the study, in which it was
found thatF(3, 50) = 3.50, and that treatments account for 17% of the
variance in the sample, both the traditional null and the hypothesis
that treatment effects are negligibly small can be rejected with an al-
pha of .05; with alpha of .01, neither hypothesis can be rejected. With
an alpha level of .05, the table suggests that the power of tests of the
traditional null hypothesis is between .50 and .80 (the actual power
level is about .65). This study also has power slightly greater than .50
for testing the hypothesis that treatment effects are negligible (i.e.,
that the population PV is .01 or less). However, the hypothesis that
treatments explain 5% or less of the variance in the population cannot
be rejected.

Note that the One-Stop F Table does not contain a set of rows cor-
responding to relatively large effects (i.e., effects accounting for more
than 5% of the variance in outcomes). As noted in chapter 1, when
the effect of treatments is known or thought to be large, there is often
no point to conducting the research. Large effects are usually so obvi-
ous that a study confirming their existence is unlikely to make much
of a contribution. More to the point, when the effects under consider-
ation are large, statistical power is unlikely to be a problem unless
samples are extremely small. When samples are this small, there are
problems that are much more severe than statistical power (e.g.,
lack of generalizability), and power analyses for large effects strike
us as very limited in value.

Interpolating Between Tabled Values

Like all F tables, the One-Stop F Table is incomplete in that it does not
table all possible values of dfhyp and dferr. Fortunately, relatively good
approximations to all of the values in this table can be obtained by lin-
ear interpolation. For example, the table includes dferr values of 50
and 60. If researchers wanted to find appropriate F values for dferr =
55, these would lie about halfway between the values for dferr = 50 and
dferr = 60. Thus, the approximate F needed to reject the traditional
null hypothesis (a = .05) with dfhyp = 2, dferr = 55 would be 3.165 (i.e.,
halfway between 3.15 and 3.18). Similarly, if dferr = 48, the appropri-
ate F values could be estimated by computing the value that F that was
80% of the distance between the tabled F for dferr = 40 and the tabled F
for d f e r r = 50. In general, the value of the interpolated F can be ob-
tained using the following equation:
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where:

Fbelow = Tabled F below the value to be calculated
Fabove = Tabled F above the value to be calculated
dfbelow

 = dferr for tabled F below the value to be calculated
dfabove

 = dferr for tabled F above the value to be calculated
dfint

 = dferr for F value to be calculated

It is important to keep in mind that linear interpolation will yield
approximate values only. For the purposes of statistical power analy-
ses, these interpolations will virtually always be sufficiently accurate
to help in making sensible decisions about the design of studies, the
choice of criteria for defining statistical significance, and so forth.

A second application of linear interpolation is likely to be even more
useful. The table includes F equivalents for the effect size values
needed to obtain power levels of .50 and .80, respectively. In the exam-
ple, where dfhyp = 3 and dferr = 50, F values of 1.99 and 3.88 are equiv-
alent to the population PV values needed to obtain power levels of .50
or .80 in a study like this [i.e., you would achieve these levels of power
if treatments truly accounted for 11% of the variance (yielding power
of .50) or 19% of the variance (yielding power of .80)]. Here, treat-
ments were expected to account for 15% of the variance. If this figure
is translated into its F equivalent (using formulas presented in Table
2.1), an F of 2.94 is obtained. A linear interpolation is used to estimate
the power of the study, using a formula that closely parallels the for-
mula used to interpolate F values:

where:

Fhypothesized
 = F equivalent for hypothesized size of the effect

F50 = F equivalent of the PV needed to obtain power of .50
(a = .05)
F 80 = F equivalent of the PV needed to obtain power of .80
(a = .05)
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In the example, 54 subjects are assigned to one of four treatments
(dfhyp = 3, dferr = 50), where treatments are expected to account for 15%
of the variance, and where a = .05. In this example, Fhypotheslzed = 2.94, F 50
= 1.99, and F80 = 3.84. Using Equation 8, the estimate of power of this
study for rejecting the traditional null hypothesis is .65. If the hypothesis
tested was that treatments accounted for 1% or less of the variance, then
F50 = 2.46, and F80 = 4.48, and power is estimated to be .57.

It is also easy to develop linear interpolation formulas that work di-
rectly from PV values, rather than working with their F equivalents.
For example, suppose that researchers are carrying out a study in
which 104 subjects are randomly assigned to one of four treatments,
yielding dfhyp = 3, dferr = 100. The One-Stop PV Table shown in Appen-
dix C tells them that if treatments account for 5.5% of the variance in
the population, they will have power of .50 for testing the nil hypothe-
sis (i.e., PV5 = .055). If treatments account for 10.1% of the variance
in the population, they will have power of .80 for testing the nil hypoth-
esis (i.e., PV8 = .101). They hypothesize that treatments in fact ac-
count for 7.5% of the variance (i.e., PVhypotheslzed = .075). Equation 11
can be used to estimate the power of the study:

According to Equation 11, this study should be expected to have a
power of .63 for testing the traditional null hypothesis.

Extrapolating outside of the tabled range of .50 - .80 is not recom-
mended, and indeed estimating actual power levels when power is
known to fall outside of these bounds does not seem to make much
difference. If power is above .80, then it is unlikely that there will be
different conclusions than if it was exactly .80, regardless of the out-
come of a study. If power is below .50, there are more serious prob-
lems than the precise estimation of power.

THE ONE-STOP PV TABLE

Appendix C presents a table that parallels the One-Stop F Table, this
time expressing the tabled values in terms of PV statistics rather than
F. So, for example, suppose a study is conducted in which 93 subjects
are randomly assigned to one of three treatments. Data from this
study would normally be analyzed using ANOVA, with dfhyp = 2 and
dferr = 90. The One-Stop F Table shown in Appendix B would give you
the F values needed for doing significance tests (either traditional on
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minimum-effect tests) and for estimating the F equivalents needed to
attain various levels of power. The One-Stop PV Table shown in Ap-
pendix C displays the same information expressed in PV values. For
example, this table shows that to reject the traditional null hypothesis
(with a = .05), treatments will need to account for at least 6.4% of the
variance in outcomes. If you set a more stringent alpha (e.g., a = .01)
is set, treatments will need to account for 9.7% of the variance to reject
the traditional null.

If a minimum-effect hypotheses is being tested, larger PV values will
be needed to reject the hypothesis that the effect of treatments is negli-
gibly small. For example, if the null hypothesis is that treatments ac-
count for less than 1% of the variance in outcomes and a = .05, a PV =
.089 is necessary to reject this null. With a = .01, a PV = .129 is
needed to reject this minimum-effect null.

Suppose researchers want to obtain power of .80 in testing the tra-
ditional null hypothesis (a = .05). The One-Stop PV Table shows that
with dfhyp = 2 and dferr = 90, they will not attain this level of power un-
less the population effect is at least moderately large (PV = .099). If
you want the same level of power for testing the hypothesis that treat-
ments account for less than 1% of the variance in outcomes, then the
population effect will have to be PV = . 128 or larger.

In sum, Appendix B frames the problem in terms of the F value or the
F equivalent needed to test various hypotheses or to reach specific lev-
els of power. Appendix C frames this same problem in terms of the per-
centage of variance in outcomes needed to explain to reject various
hypotheses or to establish various levels of power. Depending on the
purpose of the analysis (e.g., determining significance vs. making state-
ments about the effect sizes needed to satisfy different criteria), re-
searchers might find one table more convenient than the other. The
important thing to keep in mind is that both tables contain the same ba-
sic information; the choice to look for F values or their PV equivalents
depends entirely on the preferences and the convenience of the user.

THE ONE-STOP F CALCULATOR

Finally, it is often easier and more convenient to use a computer pro-
gram rather than a set of tables to estimate statistical power and to
evaluate the effects of changes in the design of a study on the levels of
power likely to be found. The One-Stop F Calculator program distrib-
uted with this book serves that purpose.

Figure 2.1 illustrates the screen that opens when the One-Stop F
Calculator is installed on the computer (simple installation instruc-
tions are included on the CD that contains the program files). The pro-
gram asks users to enter two quantities, the degrees of freedom for the
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FIG. 2.1. The One-Stop F calculator.

hypothesis being tested (enter this in the box labeled df-H) and the the
degrees of freedom for error (enter this in the box labeled df-E). Then
users decide whether they want critical values for significance testing
(either traditional nil hypothesis tests or minimum-effects tests, for
a = .05 or .01) or for estimating power (again for either nil or mini-
mum-effects tests, for power levels of .50 or .80). The program gives
both the F value and the equivalent PV value for the desired test.
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Figure 2.1 illustrates a study that attempts to use the t test to com-
pare two groups (yielding a value of dfhyp = 1), using a very small sam-
ple (N = 5, which yields dferr = 3). Here, the study asked for the F and
equivalent PV values for a traditional null hypothesis test. It is found
that an F value of 10.13 (which would translate to t = 3.18) is needed
to achieve statistical significance with a sample that small, and a
truly large effect will be needed in the study (PV = .772) to get an F
that large. In order to achieve power of .80 with a sample this small, a
population effect that is even larger is necessary (i.e., to achieve
power of .80 for testing the nil hypothesis with IV = 5 and a = .05, the
population PV will have to be at least .858). The bottom-line message
of this analysis is that researchers should not expect to reject the null
with a sample that small unless the effect of their treatments or inter-
ventions is truly staggering.

This program can also be used to quickly determine the sample
size needed to achieve particular levels of power, given what is known
or assumed about the population value of PV. For example, suppose
researchers want power of .80 for tests of the significance of the differ-
ence between two treatments (i.e., the plan is to carry out a t test) and
the treatment likely accounts for about 10% of the variance in the pop-
ulation. Here, dfhyp = 1, so all that is needed is to try out different val-
ues for dferror until the point where the PV estimate is approximately
.10. For example, if you try a value of 50 for dferror, they will find that
the population PV needed to provide power of .80 is . 14. This suggests
that a larger sample is needed. If researchers try a value of 100 for
dferror, they will find that the population PV needed to provide power of
.80 is .07. This suggests that the sample size needed is somewhere be-
tween 50 and 100. A dferror value of 70 results in a PV = . 10. Because
the value of dferror in a t test is equal to N - 2, this means that a sample
with N - 72 (or with 36 people assigned to each of the two treatments)
will provide power of .80 for tests of the null hypothesis in populations
where treatments account for 10% of the variance in outcomes.

EFFECT SIZE CONVENTIONS FOR DEFINING MINIMUM-EFFECT HYPOTHESES

Earlier in this chapter, it was noted that the best choice for PV val-
ues that defined negligible effects might depend on a number of fac-
tors, and different values might make sense in different areas of
research. However, some PV values seem more likely than others to
be chosen in defining negligible effects. In particular, many re-
searchers will choose either 1% of the variance (or less) or 5% of the
variance (or less) as their operational definition of a negligible ef-
fect, which is why these particular values are built into the
One-Stop F Table. These specific numbers are not cast in stone (any
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more than the commonly usedp values of .05 and .01), but they do
represent conventions that are somewhat widely used to describe
effect sizes in the behavioral and social sciences.

Cohen's books and papers on statistical power analyses (e.g., J. Co-
hen, 1988) have suggested a number of conventions for describing
treatment effects as "small," "medium," or "large." These conventions
are based on surveys of the literature, and seem to be widely accepted,
at least as approximations. Table 2.2 presents conventional values for
describing large, medium, and small effects, expressing these effects
in terms of a number of widely used statistics.

For example, a small effect might be described as one that ac-
counts for about 1% of the variance in outcomes, or one where the
treatment mean is about one fifth of a standard deviation higher in
the treatment group than in the control group, or as one where the
probability that a randomly selected member of the treatment group
will have a higher score than a randomly selected member of the con-
trol group is about .56.

The values in Table 2.2 are approximations and nothing more. In
fact, a few minutes with a calculator shows that they are not all exactly
equivalent (e.g., if you square an r value of .30, the result is an estimate
of PV - .09, not PV = .10). Although they are not exact or completely
consistent, the values in Table 2.2 are nevertheless very useful. These
conventions provide a starting point for statistical power analysis,
and they provide a sensible basis for comparing the results in any one
study with a more general set of conventions.

The One-Stop F Table includes F statistics for testing the sub-
stantive hypotheses that the effects of treatments are either at least

TABLE 2.2

Some Conventions for Defining Effect Sizes

Probability of a Higher
Score in Treatment

PV r d f2 Group

Small effects

Medium effects

Large effects

.01

.10

.25

.10

.30

.50

.20

.50

.80

.02

.15

.35

.56

.64

.71

Note: Cohen's f2 = R2/( l -R 2 ) = h2/( 1 - h2) = PV/( 1 -PV), where h2 = SStreatments/SStotal
Data from J. Cohen (1988) and Grissom (1994).
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small (i.e., 1% of the variance) or are at least small to moderate in
size (i.e., 5% of the variance).

It is possible to generate critical F values for any other set of conven-
tions (Appendix A shows methods of calculating the relevant
noncentral F values for different PV values), but the utility of testing
more and more stringent hypotheses (e.g., the hypothesis that the ef-
fect of treatments is at least large) diminishes as the effect size of inter-
est increases. When working with strong effects, statistical hypothesis
tests (especially tests of nil hypotheses) may become less and less in-
formative. More to the point, most research in the social and behav-
ioral sciences is likely to involve smaller rather than larger effects.

CONCLUSIONS

The statistics most widely used in the social and behavioral sciences
are either interpreted in terms of, or easily translated into, the F sta-
tistic. The model for power analysis uses the noncentral F distribu-
tion to estimate the power of a wide range of statistics (cf. Patnaik,
1949). This noncentral F represents the distribution of outcomes that
would be expected to be found in any particular study (given an effect
size, dfhyp and dferr); the degree of noncentrality (l) is a direct function
of the effect size of interest. The statistical power of the study is simply
the proportion of this noncentral F distribution that lies above what-
ever criterion used to define statistical significance. This model of
power analysis is not tied to tests of the traditional null hypothesis
(i.e., that treatments had no effect whatsoever), but rather can be eas-
ily generalized to tests of substantively meaningful hypotheses (e.g.,
that the treatment effect exceeds some specific value).

Analytic and tabular methods of statistical power analysis were
discussed. In particular, the One-Stop F Table was introduced,
which contains all of the information needed to: (a) test the tradi-
tional null hypothesis, (b) estimate statistical power for testing this
traditional null, (c) test the substantive null hypothesis that the effect
of treatments exceeds a sensible standard for defining "negligible" ef-
fects (e.g., that treatments account for no more than 1% of the vari-
ance in outcomes), and (d) test the hypothesis the substantive null
hypothesis that the effect of treatments exceeds a sensible standard
for defining "small to moderate" effects (i.e., that treatments account
for no more than 5% of the variance in outcomes). A parallel table
that was discussed lists PV values equivalent to the Fs shown in the
One-Stop F Table. These allow researchers to conduct analyses in
terms of effect size estimates rather than in terms of their F equiva-
lents. Both tables contain the same basic information, but different
users might find one form or the other more convenient to use. The
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One-Stop F Calculator program was also discussed. This program
gives a simple interface for carrying out virtually all of the analyses
discussed in this chapter. Finally, effect size estimates, which are
widely accepted as definitions of "small," "medium," and "large" ef-
fects in the social and behavioral sciences, were discussed and these
were related to statistical power analysis.



Using Power Analyses

Chapter 1 noted that there are two general ways that power analysis
might be used. First, power analysis is an extremely useful tool for
planning research. Critical decisions, such as how many subjects are
needed, whether multiple observations should be obtained from each
subject, and even what criterion should be used to define statistical sig-
nificance can be better made by taking into account the results of a
power analysis. Decisions about whether or not to pursue a specific re-
search question might even depend on considerations of statistical
power. For example, if the research idea involves a small (but theoreti-
cally meaningful) interaction effect in a complex four-way ANOVA,
power analysis might show that thousands of subjects would be needed
to have any reasonable chance of detecting the effect. If the resources
are not available to test for such an effect, then it is certainly better to
know this before the fact than to learn it after collecting the data.

Second, power analysis is a useful diagnostic tool. Tests of the tra-
ditional null hypothesis often turn out to be little more than round-
about power analyses. If a study is conducted and all of the
correlations among variables, as well as all of the planned and un-
planned comparisons between treatments turn out to be statistically
significant, then this probably indicates that the sample was very
large. If the sample is large enough, then there will be tremendous
power and any effect that is literally different from zero will also be
statistically different from zero. On the other hand, if none of re-
searchers' well-conceived hypotheses are supported with significant
results, they might want to conduct a power analysis before asking

55
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what is wrong with their ideas. If the power is too low, they might never
reject the null hypotheses, even in cases where it is clearly and obvi-
ously wrong.

This chapter discusses the major applications of power analysis.
Chapter 1 noted that because statistical power is itself a function of
three parameters, the number of observations (N), the criterion used
to define statistical significance (a), and the effect size (ES), it is possi-
ble to solve for any one of four values (i.e., power, N, ES, or a), given the
other three. The effect size parameter may be the most problematic,
because it represents a real but unknown quantity (i.e., the real effect
of treatments). Before discussing practical applications of power
analysis, it is useful to examine more closely the methods that might
be used in estimating effect sizes.

ESTIMATING THE EFFECT SIZE

Chapter 1 noted that the exact effect size is usually unknown; if re-
searchers knew precisely how treatment groups would differ, there
would be little point in carrying out the research. There are three gen-
eral methods that might be followed in estimating effect sizes in statis-
tical power analysis. First, they might use inductive methods. If
similar studies have been carried out before, they might use the re-
sults from these studies to estimate effect sizes in their own studies.
Twenty years ago, this inductive method might have relied heavily on
personal experience (i.e., whatever studies a particular researcher
has read and remembers), but with the rapid growth of meta-analysis,
it is often easy to find summaries of the results of large numbers of rel-
evant studies (see, e.g., J. E. Hunter & Hirsh, 1984; Lipsey & Wilson,
1993), already translated into a convenient effect size metric (e.g., d,
r2, or more generally, PV).

Second, deductive methods might be used, in which existing theory
or findings in related areas are used to estimate the size of an effect.
For example, suppose researchers want to estimate the effect of vita-
min supplements on performance in long-distance races. Suppose
further that they know that the vitamin supplement has a strong and
immediate effect on the efficiency with which your body uses oxygen,
and efficiency in using oxygen is strongly correlated with success in
such a race. It seems reasonable in this context to deduce that the vita-
min supplements should have a strong influence on race outcomes.

Third, they might use widely accepted conventions about what rep-
resents a large, medium, or small effect to structure the power analy-
sis. As noted later, analyses based on these conventions require very
careful thought about what sort of effect may be realistically expected
or what sort of information about statistical power is really needed.
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Nevertheless, the use of these conventions can help in carrying out
useful and informative power analyses, even if there is no basis for
predicting with any accuracy the size of the treatment effect.

Inductive Methods

Inductive methods are best where there is a wealth of relevant data.
For example, there have been hundreds and perhaps thousands of
studies on the validity of cognitive ability tests in predicting perfor-
mance in school and on the job (J. E. Hunter & Hirsch, 1987; J. E.
Hunter & R. F. Hunter, 1984). Similarly, Lipsey and Wilson (1993) re-
viewed numerous meta-analyses of psychological and educational in-
terventions. Nor is this method restricted to the behavioral and social
sciences; meta-analytic procedures are being applied in areas such as
cancer research (e.g., Himel, Liberati, Gelber, & Chalmers, 1986);
Lipsey and Wilson (1993) cited numerous meta-analyses of research
on other medical topics.

Suppose research is being conducted on the effectiveness of pro-
grams designed to help individuals quit smoking and there are suf-
ficient resources to collect data from 250 subjects. Lipsey and
Wilson (1993) cited two separate meta-analyses that suggest rela-
tively small effects on quit rates (for physician-delivered and
worksite programs, d =.34 and d = .20, based on 8 and 20 studies,
respectively). This body of research provides a reasonable starting
point for estimating power; a weighted mean of these two d values is
.24. The F equivalent for this effect size estimate, given a study com-
paring quit rates in a treatment group (n = 125) with those in a con-
trol group (n = 125) is F(l, 248) = 3.57. The power for testing the
traditional null hypothesis (a = .05) is therefore just below .50 (the
F equivalent for power of .50 from the One-Stop F Table is 3.81). If
the hypothesis that treatments accounted for 1% or less of the vari-
ance in outcomes in the population is being tested, the power would
be well below .50 (the F equivalent for power of .50 is 10.33; in this
study, power is lower than .10).

Even though the study under consideration has a relatively large
sample (N = 250), power is low, even for testing the traditional null hy-
pothesis. The reason for this is that the effects of smoking cessation
programs on quit rates are small (d = .24 means that treatments ac-
count on average for about 1.4% of the variance in quit rates). The
body of research in this area provides good reason to expect small ef-
fects, and if researchers want to have adequate power for detecting
these effects, they will need a much larger sample (e.g., you will need
about 550 subjects will be needed to achieve power of .80 in tests of
the traditional null hypothesis).
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Deductive Methods

Deductive methods are the best when there is a wealth of relevant the-
ory or models; Newtonian mechanics is probably the best example of
an area in which numerous effects can be deduced on the basis of a
small set of theoretical statements and principles. However, there are
areas in the social and behavioral sciences where the relevant theories
or models are sufficiently well developed that sound inferences could
be made about effect sizes. For example, the models most commonly
used to describe human cognitive abilities are hierarchical in nature,
with specific abilities linked to broad ability factors, which in turn are
linked to a single general cognitive ability (see Carroll, 1993, for a re-
view of factor analytic studies). If researchers wanted to estimate the
validity of a new test measuring specific abilities as a predictor of per-
formance in school, they could use what is known about the structure
of abilities to make a reasonable estimate; tests strongly related to ver-
bal or to general cognitive ability factors are likely to show moderate to
strong relations to school performance.

Suppose they used existing models of cognitive ability to estimate
test validity and obtained a figure of .40 (i.e., estimated correlation be-
tween test scores and school performance). If a sample of 65 subjects
is used, an expected correlation of .40 would yield an F equivalent
value of F( 1, 62) = 11.80, and the power for testing the traditional null
would be greater than .80; tests of the hypothesis that tests account
for more than 1% of the variance in the population would also have
power of in excess of .80. Because the expected effect is relatively
large, it is easy to obtain adequate power, even with a small sample.

Effect Size Conventions

As noted in the preceding chapter, there are some widely accepted
conventions for defining small, medium, and large effects. For exam-
ple, a small treatment effect has been described as one in which treat-
ments account for approximately 1% of the variance in outcomes, the
difference between treatment and control group means is about one
fifth of a standard deviation, or as one in which a person randomly se-
lected from the treatment group has a probability of .56 of having a
higher score than a person randomly selected from the control group
(see Table 2.2). None of these figures is sacred or exact (e.g., 2% of the
variance might reasonably be described as a small effect), but the con-
ventions described in Table 2.2 do seem to be accepted as reasonable
by many researchers, and they provide a basis for doing a power anal-
ysis even when the actual treatment effect cannot be estimated by in-
ductive or deductive methods.
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When conventions are used to estimate effect sizes, it is usually best
to base power analyses on small or small-to-medium effect sizes. As
noted in chapter 1, a study with sufficient power to detect a small ef-
fect will have sufficient power for detecting medium and large effects
as well. If researchers plan their study with the assumption that the ef-
fect is a large one, they run the considerable risk of missing meaning-
ful effects that did not reach quite the magnitude they optimistically
hoped to achieve. Thus, if the data and theory in a particular field do
not provide a firm inductive or deductive basis for estimating effect
sizes, they can always follow the convention and base their analysis on
the assumption that the effects might very well be small. A study with
sufficient power to reliably detect small effects runs little risk of mak-
ing a serious Type I or Type II error, regardless of the actual size of the
treatment effect.1

FOUR APPLICATIONS OF STATISTICAL POWER ANALYSIS

The two most common application of statistical power analysis are in:
determining the power of a study, given N, ES, and a; and determining
how many observations will be needed (i.e., N), given a desired level of
power, an ES estimate, and an a value. Both analyses are extremely
useful in planning research, and are usually so easy to do that they
should be a routine part of designing a study. Power analysis may not
be the only basis for determining whether to do a particular study or
how many observations should be collected, but a few simple calcula-
tions are usually enough to help researchers make informed deci-
sions in these areas. The lack of attention to power analysis (and the
deplorable habit of placing too much weight on the results of small
sample studies) are well documented in the research literature (J. Co-
hen, 1962; Haase et al., 1982; Sedlmeier & Gigerenzer, 1989), and
there is no good excuse to ignore power in designing studies.

There are two other applications of power analysis that are less
common, but no less informative. First, power analysis can be used to
evaluate the sensitivity of studies. That is, power analysis can tell what
sorts of effect sizes might be reliably detected in a study. If the effect of
a treatment is expected to be small, then it is important to know
whether the study will detect that effect, or whether it has sufficient
sensitivity to detect only larger effects. Second, power analysis can be

'We noted in chapters 1 and 2, Type I errors are a concern only when there is some
possibility that the null hypothesis is true, which is virtually never the case in tests of the
traditional null. Type II errors are still possible if the treatment effect is extremely small,
but this type of error (i.e., concluding that treatments have no effect when in fact they
have a completely trivial effect) would not be regarded as very serious.
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used to make rational decisions about the criteria used to define sta-
tistical significance.

Calculating Power

Chapters 1 and 2 were largely devoted to explaining the theory and
procedures used in calculating the statistical power of a study, and
these details are not repeated here. It is, however, useful to comment
on problems or issues that arise in carrying out each of the steps of
statistical power analysis.

As the examples presented in chapter 2 suggest, researchers
should do the following when estimating the level of power expected
in a study:

1. Estimate the size of the effect, expressed in terms of a common
ES measure, such as PV or d.

2. Determine the degrees of freedom (i.e., dfhyp and d f e r r ) for the sta-
tistical test to be performed, and the type of hypothesis (e.g., tradi-
tional null, minimum-effect hypothesis) to be tested.

3. Translate that effect size estimate into an F equivalent, given
these dfhyp and dferr values.

4. Use the One-Stop F Table to estimate power. If the F equivalent
is greater than the F needed to obtain power of .80, there should be
sufficient power for most purposes, and a more precise estimate is
probably not necessary. If the F equivalent is smaller than the F
needed to obtain power of .50, there will not be sufficient power for
most purposes, and a more precise estimate is probably not helpful. If
the F equivalent is between these two values on the One-Stop F Table,
the interpolation formulas in chapter 2 (Equations 9 and 10) can be
used to estimate the power level of the study.

As noted earlier, there are several ways to estimate the effect size.
Regardless of the method chosen, it is usually better (or at least more
prudent) to underestimate than to overestimate ES values; a study
with enough power to detect a small effect will also have enough power
to detect a larger effect. Second, when planning a study, some prelimi-
nary estimate of the sample size (and possibly of the research) design
must be made. This estimate, which may be modified if the study
yields either too much or too little power, helps in determining the de-
grees of freedom of the F statistic. In most cases, power analyses are
likely to lead to an increase in the sample size, but it is certainly possi-
ble that a power analysis will lead to the conclusion that adequate
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power can be obtained with a smaller sample than the one you had ini-
tially planned.

As emphasized in chapters 1 and 2, power depends substantially
on the precise hypothesis being tested. It is easier to obtain high levels
of power for tests of the traditional null hypothesis than for tests of a
minimum-effect hypothesis, at least in part because the traditional
null is so easily rejected. Tests of minimum-effect hypotheses, al-
though more difficult, are also likely to be more informative.

Finally, a decision must be made about the significance criterion.
Later, this chapter discusses in detail the issues involved in making
this choice. Here, it is sufficient to note that the choice is often practi-
cally limited to the conventional values of .05 versus 01. If any other
value is used to define statistical significance (e.g., .02 might be a per-
fectly reasonable choice in some settings), researchers will have to
fight convention and defend their choice to a potentially hostile set of
reviewers, readers, and editors (Labovitz, 1968).

Determining Sample Sizes

Rather than calculating the level of power a particular study had or
will have, it is often useful to determine the sample or research design
needed to achieve specific levels of power. To do this, it is necessary to
decide how much power is desired. As noted in chapter 2, it is hard to
justify a study design that yields power less than .50; when power is
less than .50, the study is more likely to lead to an incorrect conclu-
sion (i.e., it will not reject H0, even though it is virtually certain this hy-
pothesis is wrong) than to a correct one. Power substantially above .80
might be desirable, but it is often prohibitively difficult to obtain; in
most analyses, the desirable level of power is likely to be .80.

Once the desirable level of power is selected, determining sample
sizes follows the same general pattern as the determination of power
itself. That is, to take into account the research design, the estimated
effect size, the nature of the hypothesis being tested, and the signifi-
cance criterion being used. Appendix D can be used to determine sam-
ple sizes needed to detect a wide range of effects.

The rows of Appendix D correspond to effect sizes, described in
terms of either the standardized mean difference (d) or the proportion
of variance explained (PV), which represent the most common effect
size estimates in the literature. Table 3.1 provides formulas for trans-
lating a number of other statistics, including F, into d and/or PV.

The values in Appendix D represent degrees of freedom (dferr)
rather than exact sample sizes (N). The reason for presenting a table of
dferr values rather than presenting a table of sample sizes is that N is a
function of both dfhyp and dferr. In many applications, N = dfhyp + dferr +
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TABLE 3.1

Translating Common Statistics Into Standardized Mean Difference (d)
or Percentage of Variance (PV) Values

Standardized Mean Difference (d)

Percentage of Variance (PV)

1, but in complex multifactor designs (e.g., studies using factorial
ANOVA), the total sample size depends on the number of levels of all
design factors, and without knowing the research design in advance, it
is impossible to put together an accurate N needed table. In most
cases, however, the sample size needed to achieve power of .80 will be
very close to the dferr value shown in Appendix D. Chapter 5 deals with
applications of power analysis in multifactor studies.

Appendix D presents dferr needed when testing the traditional null hy-
pothesis. Appendix E presents the dferr needed when testing the hypothe-
sis that treatments account for 1% or less of the population variance in
outcomes. So, larger samples are needed when testing this minimum-ef-
fect hypothesis than when testing the traditional (but sometimes trivial)
hypothesis that treatments have no effect whatsoever.

To illustrate the use of Appendix D and Appendix E, consider a
study comparing the effectiveness of four diets. Suppose a small to
moderate effect (e.g., the choice of diets is expected to account for
about 5% of the variance in weight loss) is expected. To achieve power
of .80 in testing the traditional null hypothesis (with a = .05), look
down the column of Appendix D that corresponds to dfhyp = 3 (i.e.,
with four diets, there are three degrees of freedom) and find that the
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dferr needed for PV — .05 would be about 209. A sample of about 214
subjects (i.e., N = 209 + 3 + 1 ) would be necessary to achieve this
level of power, or abut 54 per group.

Appendix E shows the dferr needed to achieve power of .80 in test-
ing the hypothesis that treatments account for 1% or less of the vari-
ance in outcomes. To achieve a power of .80 in testing this
minimum-effect hypothesis, a sample of about 409 (i.e., N = 405 + 3
+ 1), or about 100 per group, would be required. This sample is al-
most twice as large as the one needed to reject the traditional null hy-
pothesis that treatments have no effect. However, if a study allows
researchers to reject the hypothesis that treatments have a negligibly
small effect (e.g., they account for less than 1% of the variance in out-
comes), they will not only know that treatments have some effect, but
they will also have a formal test of the hypothesis that the effect is
large enough to warrant attention.

Determining the Sensitivity of Studies

It is often useful to know what sort of effect could be reasonably de-
tected in a particular study. If a study can reliably detect only a large ef-
fect (especially in a context where small effects are expected to actually
occur), it might be better to postpone that study until the resources
needed to obtain adequate power are available. The process of deter-
mining the effect size that can be detected—given particular values for N
and a, together with a desired level of power—again closely parallels the
procedures described earlier. In fact, Appendices D and E, which spec-
ify the dferr needed to achieve power of .80 in testing both traditional
and minimum-effect hypotheses, are also quite useful for determining
the type of effect that could be reliably detected in a given study.

Consider a comparison of two methods of mathematics instruc-
tion. There are 140 students available for testing (70 will be assigned
to each method), and the decision is to use an a level of .05 in testing
hypotheses. Here, dfhyp = 1 (i.e., if two treatments are compared,
there is one degree of freedom for this comparison) and dferr =138
(i.e., dferr = N - dfhyp -1). Looking down the dfhyp = 1 column of Appen-
dix D, it is found that 138 falls somewhere between the dferr needed to
detect an the effect of treatments when PV = .05 and PV = .06 (or be-
tween d = .46 and d = .51). In other words, with 140 students, there
would be a power of .80 to detect a small to moderate effect, but there
would not be this level of power for detecting a truly small (but per-
haps important) effect.

Take another example. Suppose there are four cancer treatments
and 44 patients. Here, dfhyp = 3 and dferr = 40. Appendix D indicates
that there is a power of .80 to detect effects that are quite large (i.e., PV
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= .24); if the true effects of treatments are small or even moderate, the
power to detect these effects will drop substantially.

Both of the aforementioned examples are based on tests of the tra-
ditional null hypothesis. To test the hypothesis that treatments ac-
count for 1% or less of the variance in outcomes (which corresponds
to d values of .20 or lower), the sample of 140 students will give the
power of .80 for detecting differences this large between the two treat-
ments only if the true effect is relatively large (i.e., PV = .09 or d = .63;
see Appendix D). This level of power will exist for detecting nontrivial
differences among the four cancer treatments (with N = 44) only if the
true differences between treatments are truly staggering (i.e., PV =
.26; see Appendix E).

Determining Appropriate Decision Criteria

As noted earlier, the choice of criteria for defining statistical signifi-
cance is often practically limited to the conventional values of .05
versus .01 (occasionally, social scientists use .001 or .10 as signifi-
cance levels, but these are rare exceptions). The choice of any other
value (e.g., .06) is likely to be met with some resistance, and the bat-
tle is probably not worth the effort. Because the choice among signifi-
cance levels is constrained by convention, the steps involved in
making this choice do not exactly parallel the processes laid out in
the three preceding sections of this chapter. Rather than describing
specific steps in choosing between .05 and .01 as alpha levels, con-
sider the range of issues that are likely to be involved in making this
choice. This discussion leads to the conclusion that researchers
should never use the .01 level when testing traditional null hypothe-
ses, nor should they usually use other procedures designed to guard
against Type I errors in testing this hypothesis. As shown later,
choice of the .01 significance criterion leads to a substantial reduc-
tion in statistical power, with virtually no meaningful gain in terms of
protection against Type I errors. The same is true of most proce-
dures designed to reduce Type I errors (see Zwick & Marascuilo,
1984, for a review of procedures used in testing multiple contrasts).

Balancing Risks in Choosing Significance Levels Chapter 1 revealed that when
testing the traditional null hypothesis, two types of errors are possi-
ble. Researchers who reject the null hypothesis when in fact it is true
make a Type I error (a is the probability of making this error if HO is in
fact true). The practical effect of a Type I error is that researchers
could come to believe that treatments have some effect when in fact
they have no effect whatsoever. Researchers who fail to reject the null
hypothesis when it is false make a Type II error (b is the probability of
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making this error when HO is in fact false, and power = 1 - b). The
practical effect of making a Type II error is that researchers might give
up on treatments that in fact have some effect.

The most common strategy for reducing Type I errors is to make it
difficult to reject the null hypothesis (e.g., by using .01 rather than .05
as a criterion for significance). Unfortunately, this strategy also sub-
stantially reduces the power of tests. For example, suppose research-
ers are comparing two treatments (with 200 people assigned to each
treatment) and they expect a small effect (i.e., d = .20). Using .05 as a
significance criterion, their power would be .64; if a = .01, power
drops to .37 (J. Cohen, 1988). This trade-off between Type I error pro-
tection and power suggests that in deciding which significance level to
use, they must balance the risk and consequences of a Type I error
with the risk and consequences of a Type II error. Nagel and Neff
(1977) discussed a decision-theoretic strategy for choosing an alpha
level that provides an optimum balance between the two errors.

Cascio and Zedeck (1983) suggested that Equation 12 can be used
to estimate the apparent relative seriousness (ARS) of Type I versus
Type II errors in statistical significance tests:

where:

p(H1)= probability that H0 is false

According to Equation 12, if the probability that treatments have
some effect is .7, a is .05 and the power is .80, a mistaken rejection of
the null hypothesis (i.e., a Type I error) is treated as if it was 9.33 times
as serious [i.e., (.7 * .2)/(.3 * .05) = 9.33] as the failure to reject the null
when it is wrong (i.e., a Type II error). In contrast, setting a at. 10 leads
to a ratio of 4.66, or to the conclusion that Type I errors are treated as if
they are 4.66 times as serious as a Type II error (See also Lipsey, 1990).

The first advantage of Equation 12 is that it makes explicit values
and preferences that are usually not well understood, either by re-
searchers or by the consumers of social science research. In the sce-
nario described, an alpha level of .05 makes sense only if
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researchers think that Type I errors are over nine times as serious as
Type II errors. If they believe that Type I errors are only four or five
times as serious as Type II errors, then they should set their signifi-
cance level at .10, not at .05.

The second advantage of Equation 12 is that it explicitly involves
the probability that the null hypothesis is true. As noted in several
other contexts, the traditional null hypothesis is virtually never true,
which means that both null hypothesis testing and efforts to reduce
Type I errors are sometime pointless (Murphy, 1990). If the null hy-
pothesis is by definition false, then it is not possible to make a Type I
error. Thus, the only circumstance in which stringent significance cri-
teria should be used, testing procedures that minimize type I errors
should be adopted, and so on. are those in which the null hypothesis
might actually be true. This virtually never happens when testing the
traditional null hypothesis, but it might occur when testing a mini-
mum-effect hypothesis.

Should You Ever Worry About Type I Errors? In testing the traditional null hy-
pothesis, it is often virtually impossible to make a Type I error. If Ho is
known to be false, then there simply is no way to make a Type I error,
and the only concern should be maximizing power (and therefore
minimizing Type II errors). In contrast, there are good reasons for
concern over Type I errors when testing a minimum-effect hypothesis.
It is virtually impossible to devise serious treatments or interventions
that have no effect whatsoever, but there are many treatments, inter-
ventions, tests, and so forth, that have only negligible effects. If the hy-
pothesis to be tested is that the effect of treatments falls under some
sensible minimum, then it is quite possible that the null will be true,
and something will be learned by testing it.

As Equation 12 suggests, it is impossible to sensibly evaluate the
relative emphasis given to Type I versus Type II errors unless the prob-
ability that the null hypothesis is in fact true can be estimated. Table
3.2 shows the relative seriousness with which Type I versus Type II er-
rors are treated, as a function of both the alpha rate and the probabil-
ity that the null hypothesis is true, in studies where power = .80. For
example, if there is a 5% chance that treatments really do have a negli-
gible effect (i.e., the probability that the minimum-effect null hypothe-
sis is true is .05), the decision to use an alpha level of .01 makes sense
only if it is believed that Type I errors are 380 times as serious as Type
II errors. As indicated in Table 3.2, as a increases (i.e., as it becomes
easier to reject H0), the relative seriousness attached to Type I versus
Type II errors goes down. So, if the belief is that Type II errors are at all
serious relative to Type I errors, the message of Table 3.2 is clear; Use
a more lenient criterion for determining statistical significance.
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TABLE 3.2

Relative Seriousness of Type I Versus Type II Errors as Function of Alpha
and Probability that the Null Hypothesis is True (Power = .80)

Alpha (a)

Probability that HO is
True .01 .05 .10

.50

.30

.10

.05

20.00

46.66

180.00

380.00

4.00

9.33

36.00

76.00

2.00

4.66

18.00

38.00

It is easy to rearrange the terms of Equation 12 to compute the al-
pha level that should be used to reach an appropriate balance between
Type I and Type II errors, a balance described as the desired relative
seriousness (DRS).2 For example, if researchers decided that they
wanted to treat Type I errors as twice as serious as Type II errors, the
desired relative seriousness is 2.00; if the probability that the null hy-
pothesis was true was .30, power was .80, and they wanted to treat
Type I errors as if they were twice as serious as Type II errors, re-
searchers should use an alpha level of .23. The desired alpha level
(i.e., level that will yield the appropriate balance between Type I and
Type II errors) can be obtained from Equation 13:

where:

adesired = alpha level that will yield the desired relative seri-
ousness of Type I and Type II errors
DRS = desired relative seriousness of Type I and Type II
errors

2Keep in mind, however, that using nonconventional alpha levels will often require
vigorous defense of this choice, even in contexts where the "conventional" choice (e.g.,
.05, .01) makes no sense whatsoever.
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To repeat a critical point, be concerned with Type I errors if and
only if there is a realistic possibility that such an error can occur. One
of the distinctions between the traditional null and minimum-effect
tests is that there is a realistic possibility that the minimum-effect null
hypothesis will be true, which suggests that serious decisions must be
made about the appropriate balance between Type I and Type II er-
rors. Equations 12 and 13 can help in making those decisions.

CONCLUSIONS

Statistical power analysis can be used in planning future studies (e.g.,
determining how many subjects are needed) and/or in diagnosing stud-
ies that have already been carried out (e.g., calculation of power levels
helps researchers sensibly interpret significance tests). All applications
of statistical power analysis require at least an estimate of the true effect
size; estimates can be obtained form literature reviews or from relevant
theory. Even where little is known about the true effects of treatments,
effect size conventions can be used to structure power analyses.

It is possible to use the methods described here to determine the
probability that a study will correctly reject the null hypothesis, deter-
mine the number of subjects or observations needed to achieve ade-
quate power, determine the sort of effects that can be reliably detected
in a particular study, or make informed choices about the criteria that
define statistical significance. As noted throughout this book, these
applications of power analysis are not in any way limited to tests of the
traditional null hypothesis, but rather can be easily adapted to more
interesting and informative tests of the hypothesis that treatment ef-
fects exceed some minimum level.

The distinction between traditional and minimum-effect hypoth-
eses is especially important when making decisions about criteria
for defining a significant outcome. Simply put, when testing the tra-
ditional null hypothesis, there is rarely any justification for choos-
ing a stringent alpha level (e.g., .01 rather than .05). Procedures
designed to protect against Type I errors (e.g., Bonferroni correc-
tions) usually reduce power, and should only be applied if there is
some realistic possibility that a Type I error can be made. This is
unlikely when testing the traditional null hypothesis; this hypothe-
sis is usually known to be incorrect, virtually by definition. Type I
errors are a very real concern in tests of minimum-effect hypothe-
ses, and the equations presented here allow researchers to ratio-
nally assess the relative emphasis placed on maximizing statistical
power versus avoiding errors of this sort.



Multi-Factor ANOVA
and Repeated Measures Studies

Experiments and quasi-experimental studies in the behavioral and
social sciences often involve several independent variables that are
manipulated or studied jointly. For example, an educational psycholo-
gist might be interested in the effects of both the amount of instruction
(e.g., 2, 3, or 4 days a week) and the method of instruction (e.g., tradi-
tional lecture vs. hands-on learning) on the achievement of students.
A factorial experiment is one in which the individual and joint effects
of both of these independent variables can be studied. So, for exam-
ple, an investigator might randomly assign each of 240 students to
one of the conditions illustrated in Fig. 4.1.

FIG. 4.1. A factorial experiment.
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If students are randomly assigned to these six conditions, the result
should be 40 students in each cell of Fig. 4.1 (in this sort of study, it is
common to use n to designate the number of people in each condition
and N to designate the number of participants).

Sometimes, it is not possible to assign students at random. For ex-
ample, it might be administratively impossible to move students
around at random, but it might be possible to assign classes or groups
of students to each cell, creating a quasi-experimental study. The dis-
tinction between a true experiment and a quasi-experimental study is
that experiments involve random assignment of each individual to
conditions, whereas quasi-experimental studies do not allow every
subject to be randomly assigned to conditions. The methods used to
analyze data from experiments and quasi-experiments are identical,
but true experiments permit stronger inferences about causation.

THE FACTORIAL ANALYSIS OF VARIANCE

The analysis of variance (ANOVA) is a statistical technique that in-
volves asking the question, "Why do some people get high scores and
others get low scores on the dependent variable?" (or, "why do scores
vary?"). In its most general form, in a study where subjects are as-
signed to different treatments and their scores on some common de-
pendent variable are obtained, ANOVA answers this question by
breaking down the variability of scores into two components, as illus-
trated in Equation 14:

Variability in scores = Variability due to differences
in treatment means + Variability not due to differences

in treatment means [14]

In a study where there is only one independent variable (e.g., where
the independent variable is the number of days of instruction), Equa-
tion 14 corresponds to:

Variability in scores = Variability due to treatments
+ Variability due to error [15]

In this sort of study, the mean square between (MSB) provides an es-
timate of the variability associated with treatments, the mean square
within (MSW) provides an estimate of the variability in scores among
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subjects who receive the same treatment (i.e., variability that is not
due to the treatments). Thus, MSW represents variability due to error
(i.e., the variability that would be expected if all the differences among
scores were merely random, chance fluctuations). The statistic F =
MSg/MSw tells whether the variability due to treatments is large rela-
tive to the variability in scores due to error (i.e., whether the variability
due to treatments is larger than what would be expected if everything
was due to chance). If the variablity due to treatments represents
more than chance fluctuations, it may be concluded that the treat-
ments had some effect. In a one-way ANOVA, all of the variability in
scores is broken down into these two components (between vs.
within), and as a result, it is easy to use the F statistic to estimate the
effect size, PV.

As noted in chapter 2, in a one-way ANOVA, PV = dfhyp * F/[ (dfhyp * F)
+ d f e r r ) ] . In factorial ANOVA, the questions asked and the breakdown
of the variability in scores becomes more complex, and as a result, the
estimation of PVand of statistical power also becomes more complex.
This chapter generalizes the formula used for estimating PV from the
F values obtained in a factorial ANOVA study.

Factorial experiments allow researchers to ask several questions
simultaneously. For example, the factorial study illustrated in Fig. 4.1
allows them to ask three questions: (a) What is the effect of the num-
ber of days of instruction, (b) what is the effect of the style of teaching,
and (c) do these two variables interact (i.e., does the effect of the
amount of instruction depend on the method of instruction used?)?
Different research designs might allow researchers to ask a wider
range of questions (e.g., a later section of this chapter discusses re-
peated measures designs, which allow them to examine systematic
subject effects and subject by treatment interactions), or might pro-
vide a more narrowly focused examination of the data (e.g., designs
with nested factors can be more efficient, but may not provide an op-
portunity to ask all of the questions that are possible in a fully crossed
factorial design). In multi actor ANOVA studies, it is common to have
different levels of power for each of hypotheses tested.

Different Questions Imply Different Levels of Power

In the design illustrated in Fig. 4.1, there are three distinct hypotheses
that can be tested via ANOVA, two main effect hypotheses (i.e., the hy-
pothesis that the type of instruction and the amount of instruction in-
fluence learning) and one interaction hypothesis (i.e., the hypothesis
that the effects of the type of instruction depends on the amount of in-
struction). All other things being equal, they will have more power for
testing the hypothesis that the type of instruction matters than for test-
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ing the hypothesis that the amount of instruction matters. Researchers
will have more power for testing either of these main-effect hypotheses
than for testing the hypothesis that the amount and type of instruction
interact. To understand why this is true, it is necessary to think con-
cretely about the type of question ANOVA is designed to answer.

In some ways, the name "analysis of variance" is an unfortunate
one, because it can lead people to forget what ANOVA was designed to
do. The analysis itself focuses on identifying sources of variability or
variance (hence the name ANOVA), but the reason for doing the analy-
sis is generally to compare means. For example, when asking whether
the main effect for type of instruction is large, this is really asking
whether the mean score of people who received lecture training is sub-
stantially different from the mean score of people who received
hands-on instruction. Similarly, when asking whether the main effect
for amount of instruction is large, the real question concerns whether
the scores of people who received more instruction are substantially
different from the scores of people who received less instruction. In-
teraction hypotheses in the design illustrated in Fig. 4.1 involve com-
parisons of individual cell means.

A general principle running through all of the power analyses dis-
cussed in chapters 1-3 is that there is more power when hypotheses
are tested in large samples than when similar hypotheses are tested in
smaller samples. That is, power increases with N. In ANOVA, the level
of power for comparing means (i.e., for testing hypotheses about main
effects and interactions) depends largely on the number of observa-
tions that goes into calculating each mean. Suppose, for example, that
240 subjects show up for the study illustrated in Fig. 4.1. Tests of the
main effect for type of instruction will compare the mean score of the
120 people who receive lectures with the mean score of the 120 people
who receive hands-on instruction. Tests of the main effect of amount
of instruction will compare three means, each based on 80 subjects
(i.e., 80 people received 2 days of instruction, 80 received 3 days, and
80 received 4 days). Tests of the interaction effect will involve compar-
ing cell means, each of which is based on 40 people (e.g., 40 subjects
received 2 days of lecture, another 40 received 3 days of hands-on in-
struction etc.). All other things being equal, power is higher for statis-
tical tests that involve comparing means from samples of 120 people
(here, tests of the main effect of instruction type) than for tests that in-
volve comparisons samples of 80 people (here, tests of the main effect
of amount of instruction). Statistical tests that involve comparisons
among means obtained from samples of 40 people (here, tests of the
interaction) will often have even lower levels of power.

In ANOVA, it is common to distinguish between the number of ob-
servations in each cell of a design (designated by the lowercase n.) and
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the total number of observations in a study (designated by the upper-
case N). In the aforementioned study, the interaction means are based
on n = 40 subjects, and the main effect means for the type of instruc-
tion and amount of instruction main effects are based on samples of
3n and 2n subjects (i.e., 120 and 80), respectively. If all other things
were equal, the larger the sample, the more power would be expected.
Unfortunately, all things are rarely if ever equal, and it is difficult to
state as a general principle that tests of main effects will always be
more powerful than tests of interactions, or that main effect tests that
involve comparing fewer means (and therefore fewer dfhyp ) will be
more powerful than main effect tests that involve comparing more
means (and therefore more dfhyp) The reason for this is that the effect
sizes for each of the separate questions pursued in ANOVA can vary.
For example, suppose that there is a very large interaction effect, a
moderately large main effect for the amount of instruction, and a very
small main effect for the type of instruction. This might lead to the
highest level of power for tests of the interaction and to the lowest level
of power for tests of the type of instruction main effect.

Estimating Power in Multifactor ANOVA

The process of estimating the power of tests of main effects and inter-
actions in ANOVA is a straightforward extension of the processes de-
scribed in chapters 1 and 2. In particular, power depends on sample
size, effect size, and the decision criterion. For example, assume that
researchers expected a small main effect (PV =.01) for the type of in-
struction, a moderately large main effect (PV = . 10) for the amount of
instruction, and an equally large effect (PV =.10) for the interaction. If
N = 240 (i.e., there are 240 subjects randomly assigned to the six cells
in this design), they would expect power to equal approximately .30
for the type of instruction main effect (assuming a = .05). They would
expect power levels of approximately .99 for the amount of instruction
main effect and the type by amount interaction. In other words, power
levels would be quite low for testing some effects and quite high for
others in this study.

Estimating PV From Fin a Multifactor ANOVA

In a one-way ANOVA, all of the variability in scores is broken down
into two components, MSB and MSW Once you know the value of F, it is
easy to determine the value of PV, which reflects the proportion of
variance due to differences between treatments [as noted earlier, in a
one-way ANOVA, PV = (dfhyp * F)/[(dfhyp * F) + dferr)]. In a multifactor
ANOVA, F does not, by itself, give enough information to allow for cal-
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culation of PV. For example, in the study illustrated in Fig. 4.1, the F
for the type of instruction main effect tells you how large this effect is
relative to MSerror, but it does not tell how much of the total variance is
accounted for by differences in types of instruction. In a multifactor
ANOVA, the PV for one main effect depends in part on the size of the
other main effects and interactions.

It is possible to solve for the percentage of variance explained by
each of the effects in the ANOVA model. In most cases (exceptions are
described later), all that is required is the F and the degrees of free-
dom for each effect in the model. Returning to the example, suppose
the following is found:

Type of Instruction: F (1, 234) = 3.64
Amount of Instruction: F (2, 234) = 15.19

Type X Amount Interaction: F (2, 234) = 16.41

These three sets of F values and degrees of freedom provide all of
the information needed to determine the PV for each of these three ef-
fects, as well as the PV for the error term.

To see how this information can be used to calculate PV, we start by
noting that:

And

In a design where there are two main effects (label these A and B)
and one interaction (labeled AB), it is easy to show that:

If the percentage of variance explained by error is known, it follows
that the rest of the variance is explained by the model as a whole (i.e., by
the combined effects of the A effect, the B effect, and the AB interaction).
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Finally, once the combined effects of A, B, and AB are all known, all
that remains is to determine the percentage of variance explained by
each. These values are given by:

Applying Equations 18 through 22 to the F and devalues in the ex-
ample, it maybe concluded that: (a) error accounted for 77.8% of the
variance (Equation 18); (b) the A main effect, the B main effect, and
the AB interaction, combined, accounted for 22.2% of the variance
(Equation 19); (3) the A main effect accounted for 1% of the variance
(Equation 20); (d) the B main effect accounted for 10% of the variance
(Equation 21); and (e) the AB interaction accounted for 11% of the
variance (Equation 22).

It is easy to extend Equations 18 through 22 to designs with three,
four, or more factors. There are only two real limitations to these
equations. First, they can only be used with fully crossed factorial de-
signs, where an equal number of subjects is assigned to every possible
combination of levels of A, B, and so on. Thus, equations of this sort
will not allow for easy computation of PV from F in nested designs or
incomplete designs. Corresponding calculations are possible, but la-
borious. Second, and more important, these equations apply only to
fixed-effect models, in which all significance tests involve comparing
the MS for each effect in the model to MSerror. Models that include ran-
dom effects require more complex significance tests, and it is not pos-
sible to develop a simple set of formulas that cover all possible
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combinations of fixed and random effects. Luckily, fixed-effect models
are much more common in the behavioral and social sciences than
random-effects or mixed models (e.g., the default method for virtually
all statistical analysis packages is to use fixed-effects models for
structuring significance tests), especially in designs that do not in-
clude repeated measures.

REPEATED-MEASURES DESIGNS

Several years ago, a colleague interviewed for a job at a university
where the animal learning researchers had decided to break the mold.
Instead of the usual lab with rats, pigeons, and other small animals,
they had a basement lab where alligators learned to make their way
through a flooded maze. We are not sure how they dealt with issues of
statistical power, but it is a good bet that they did not get more alliga-
tors every time a power analysis told them that N was too small.

There are many research areas where it is virtually impossible to
gather large numbers of subjects. Sleep research often involves multi-
ple nights, with large numbers of observations each night. Vision re-
search often involves hundreds of trials per subject. Although the
advice that researchers should aim for large Ns applies even in these
areas, it is a fact of life that research designs that involve large num-
bers of subjects are sometimes impossible to implement. Repeated
measures designs allow researchers to obtain a lot of information
from a relatively small number of subjects by gathering several pieces
of data from each subject.

Most discussions of statistical power start with the assumption
that subjects are randomly assigned to treatments, and one piece of
data is taken from each subject. One of the hallmarks of this be-
tween-subject design is that the observations obtained are statistically
independent. That is, the score achieved by Subject 2 in a study is as-
sumed to be independent of the score achieved by Subject 1. This de-
sign has many attractive features, but it is not always the best way to
design studies. In many research areas, the scientific question itself or
the practical constraints involved in running subjects require that re-
searchers obtain several observations from each subject; these are of-
ten referred to as repeated measures designs.

Power analysis suggests that the larger the N, the more power there
will be for statistical tests. In a between-subjects study, there is no am-
biguity, because N refers to the number of people. In a study involving
repeated measures, N refers to the number of observations, and dif-
ferent ways of producing the same number of observations will have
different implications for statistical power. For example, suppose the
current study involves 10 subjects, each of whom provides five pieces
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of data. There are 50 pieces of data, but this is not statistically equiva-
lent to a study in which there are 50 subjects, each of whom provides a
single piece of data. Similarly, doubling the number of observations
might have different effects, depending on the way it is done. Ten peo-
ple, each doing 10 things, will yield different levels of power than 20
people each doing 5 things, or 100 people, each doing 1 thing.

Table 4.1 illustrates a key difference between repeated measures
studies and studies that use between-subject designs (in which each
subject provides one piece of data). Suppose a study uses a .05 sig-
nificance criterion and a small to moderate effect is expected (i.e.,
the difference between the most effective treatment and the least ef-
fective treatment corresponds to d = .50), and relatively small corre-
lations between repeated measures (i.e., r values of .20 or lower).
The table shows the number of subjects that would be needed and a
repeated measures study, and contrasts that to the number of sub-
jects needed for a equivalent level of power in a between-subjects
study (Maxwell & Delaney, 1990).

A comparison of these two designs suggests many interesting
things. First, the total number of observations is held constant, then
researchers will get more power from repeated measures designs.
With two treatments, you need only 53 subjects are needed (yielding
106 observations in a repeated measures design) to attain the same
level of power as is achieved with 128 subjects in a between-subjects
design. If there are four treatments, the result will be the same level of
power with a sample of 74 subjects, each receiving all four treatments

TABLE 4.1
N Required to Achieve Power = .80 With Maximum d = .50 and r = .20

Between-Subject

Treatments

2

3

4

5

6

Number of
Subjects

128

237

356

485

624

Repeated-Measures

Subjects

53

65

74

82

88

Observations

106

195

296

410

528
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(yielding 296 observations) as would be achieved in a between-sub-
jects study involving 356 subjects.

Table 4.2 shows a similar set of calculations, based on the assump-
tion that the correlation between repeated measures is larger (i.e., r
values of at least .40). It is evident that the effect of using a repeated
measures design is substantially larger if the correlations among the
repeated measures are relatively high than when these correlations
are low (if the correlations between repeated measures are near zero,
both designs will require about the same number of observations to
achieve equal levels of power). In Table 4.1, if there are four treat-
ments that yield scores that are not highly correlated (at most, r =
.20), you would need 74 subjects (yielding 296 total observations)
would be needed to achieve the same level of power as would be
achieved with 356 observations in a between-subjects study. In Table
4.2, where treatments yield scores that are more highly correlated (r is
at least .40), 57 subjects (yielding 228 observations) would achieve
the same level of power as a between-subjects study with N - 356.

Why Does This Work?

There are several ways to explain why repeated measures studies are
more powerful than similar between-subjects studies. First, as a com-
parison of Tables 4.1 and 4.2 might suggest, the correlation between
repeated measures makes a big difference. The analysis of variance
involves breaking down the variability in scores into variance due to
the treatments and variance due to error, and if observations are con-

TABLE 4.2

N Required to Achieve Power = .80 with dmax = .50 and r = .40

Between-Subject Repeated Measures

Treatments

2

3

4

5

6

Number of
Subjects

128

237

356

485

624

Subjects

40

50

57

63

68

Observations

80

150

228

315

408
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sistent over several treatments (which is what a high correlation be-
tween repeated measures implies), there is simply less error variance.
All other things being equal, there is less random variability in a set of
repeated measures than in a set of independent measures, each ob-
tained from a different subject. The principle here is similar to the
central idea in traditional psychometric theory (i.e., that by grouping
together several inter correlated observations, it is possible to get a
highly reliable measure of where each subject stands on the depend-
ent variable). Repeated measures designs allow researchers to take
advantage of the fact that the mean of several correlated observations
is a more reliable piece of information about a subject than a single ob-
servation, which is all they would have in abetween-subjects design.

Second, repeated measures designs allow for the identification and
removed of sources of variance in scores that are treated as error in a
between-subject design. In particular, repeated measures designs al-
low for estimation and removal of systematic subject effects that can-
not be estimated or controlled in typical between-subject designs.
Consider the following experiment.

Subjects are asked to complete a complex psychomotor task under
different sorts of distraction. There are three levels of noise (loud, very
loud, painfully loud) and two levels of temperature variation (very cold,
very hot). You have enough time and money to collect 60 observations.
Table 4.3 shows the effects that can be estimated (along with their de-
grees of freedom) in a between-subjects study and in a within-subjects
study in which each subject participates in all six conditions.

TABLE 4.3

Sources of Variance in Between versus Within-Subjects Designs

Between

Noise (N)

Temperature (T)

N |x| T

Error

df Within

2 Noise

1 Temperature (T)

2 N |x| T

54 Subjects (S)

N |x| S

T |x| S

Error

df

2

1

2

9

18

9

18
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The repeated measures design allows researchers to find out
whether there are systematic subject effects (some subjects might be
better at this sort of task than others), subject by noise interactions
(some subjects may be more distracted by noise than others), and
subject by temperature interactions (some subjects may be more
distracted by hot or cold than others). These subject effects can all be
estimated and removed from the residual error term. In contrast, be-
tween-subject designs lump all of these effects into "Error." If there
are meaningful subject effects and subject by treatment interactions,
repeated measures designs will allow researchers to remove them
from error, and between-subjects designs will treat these systematic
effects as part of the overall error term. Anything they can do to re-
duce error is likely to increase statistical power, and one reason for
the power of repeated measure designs is that they allow researchers
to isolate these subject effects. Finally, there is a more general statis-
tical explanation for the power of repeated measures designs. Chap-
ter 2 discussed the noncentral F distribution, and noted that as the
noncentrality parameter gets larger, the mean of the F distribution
increases and the variance grows larger as well. One thing that af-
fects the noncentrality parameter is the effect size; it is this relation
that allowed for the creation F tables for minimum-effect F tests.
Thus, the larger the effect of the interventions and treatments, the
stronger the upward shift in the distribution of F values expected to
be found in the study.

Vonseh and Schork (1986) noted that in repeated measure studies,
the value of the noncentrality parameter depends on both the effect size
and the correlations among repeated measures. The precise effects of
the correlations among repeated measures on the distribution of F are
complex and nonlinear, but in general the higher the correlation among
measures, the more noncentral the distribution of F becomes.

Repeated measures studies tend to yield larger values of F, and
therefore more power.

Why Doesn't Everyone Use Repeated Measures Designs?

Repeated measures designs are more powerful, more efficient, and
easier to implement than between-subjects designs. For example,
suppose a power analysis reveals that 400 subjects are needed to ob-
tain a reasonable level of power. Researchers might go out and recruit
400 individuals, getting a single score from each one (a between-sub-
jects design). Alternately, they might need to recruit only 10 subjects,
and get 40 observations from each (in fact, this will yield more power
than a between-subjects design with N = 400). Given the practical and
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statistical advantages of repeated measured designs, they might won-
der why anyone uses between-subjects designs.

Although repeated measures designs are attractive in many ways,
they often turn out to be inappropriate for many research topics. Con-
sider, for example, a study examining the effectiveness of five different
methods of instruction for teaching second-grade students basic
mathematics. A repeated measures design that exposes all students to
all five methods will run into a serious problem, often labeled a carry-
over effect. That is, whatever the students learn with the first method
to which they are exposed will affect their learning and performance
on subsequent methods. By about the fourth time students have gone
over the material (using each of four methods), they probably will have
learned it, and will certainly be getting pretty sick of it. The first four
trials will almost certainly affect outcomes on the fifth trial.

In general, many research questions make a repeated measures de-
sign difficult to implement. Studies of learning, or interventions de-
signed to change attitudes, beliefs, or the physical or mental state of
subjects might all be difficult to carry out in a repeated measures
framework. If the interventions under study change subjects, it might
be difficult to interpret data when several different interventions are
implemented, one after the other. Similarly, some research paradigms
involve tasks that are complex or time consuming, and even if it is the-
oretically feasible to repeat the task under a variety of conditions,
there may be serious practical barriers to obtaining multiple observa-
tions from each subject. Some studies allow for mixed designs, in
which some of the factors studied represent repeated measures and
others represent between-subject factors, and these designs often
represent the best compromise between the power and efficiency of
repeated measures designs and the independence of observations
that characterizes between-subject designs.

One of the apparent strengths of repeated measures designs is also
a potential weakness (i.e., the ability to obtain a large number of ob-
servations from a small number of subjects). For example, in some ar-
eas of physiological psychology, it might be common to obtain several
hundred observations from each subject, and it is not unusual to see
studies where the number of subjects ranges from 10 to 20, and some-
times samples are even smaller. These are not small sample studies in
the traditional sense, because the number of observations is poten-
tially huge (e.g., in some areas of vision research, studies in which 10
subjects each provide 400 trials are common). However, the small
number of subjects does raise important concerns about the
generalizability of the results. Even if true random sampling proce-
dures are used, you have to be concerned about the possibility that the
results obtained from one group of 10 subjects might be quite differ-
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ent from those obtained from another group of 10. In between-subject
studies, they might not have the same set of worries. A random sample
of 400 subjects is almost certain to provide results that generalize to
the parent population, and a second random sample of 400 is almost
certain to provide converging findings. In some cases where it is feasi-
ble to obtain hundreds of observations from each of a few subjects, it
might be concluded that it is better to obtain a handful of observations
from a larger set of subjects.

THE MULTIVARIATE ANALYSIS OF VARIANCE

Throughout, this book has concentrated on a family of statistical
methods that all have one feature in common—that is, there is some
specific variable, the dependent variable, that represents the focus of
the analysis. In many studies, researchers are likely to collect data
on several dependent variables, and are likely to conduct
multivariate rather than univariate analyses. For example, suppose
they are interested in determining whether there are differences in
the outcomes of four specific training programs that have been pro-
posed for teaching pilots to use a new global positioning technology.
They might evaluate their performance in terms of the number of er-
rors made in applying this technology, in terms of the amount of time
needed to learn the technology, or in terms of increased efficiency in
planning and sticking to flight routes. Rather than conducting three
separate analyses of variance (i.e., one for errors, one for time spent,
and one for flight planning), they are likely to use multivariate meth-
ods that combine these three dependent variables into a single analy-
sis. Specifically, they are likely to carry out a multivariate analysis of
variance (MANOVA).

There is a substantial literature dealing with power analysis in
MANOVA (e.g., Maxwell & Delaney, 1990; Stevens, 1980, 1988, 2002;
Vonesh & Schork, 1986). In a very general sense, the issues in deter-
mining the power of MANOVA are quite similar to those that affect the
power of univariate ANOVAs. First, the power of MANOVA depends on
N, the effect size, and the alpha level, just as in univariate ANOVA.
Large samples, strong effects, and lenient alpha levels lead to high lev-
els of power, whereas small samples, small effects, and stringent al-
pha levels lead to lower levels of power. Second, a principle already
noted for repeated measures ANOVA also applies to MANOVA. In gen-
eral, power is higher when the variables being examined (here, the
multiple dependent variables that are combined to carry out the
MANOVA) are highly correlated than when they are uncorrelated.
Finally, the power of MANOVA depends on the number of dependent
variables. A study that uses four or five dependent measures will tend
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to have more power than a study that uses one (leading to a univariate
ANOVA) or two. Stevens (1988, 2002) presented useful tables for esti-
mating power in MANOVA.

CONCLUSIONS

Multifactor ANOVAs involve asking several research questions at once,
and the level of power often varies from question to question. Thus,
when there are multiple independent variables, it is not enough to ask
how much power there is in the analysis. Rather, researchers must ask
how much power they have for each main effects test, how much power
for each interaction, and so on. Designs that include repeated mea-
sures usually provide more power than equivalent between-subjects
designs, because they allow them to control for sources of error that are
difficult to eliminate in a between-subjects design.

The power of multivariate analyses of variance is influenced by
many of the same factors that affect univariate ANOVAs. Power in
MANOVA increases as the sample size increases, as the effect sizes get
larger, and as alpha becomes less stringent. The power of MANOVA
also depends on the number of dependent variables and the correla-
tions between then. Power is higher when there are more dependent
variables and when they are more highly correlated.



Illustrative Examples

The purpose of this chapter is to illustrate the application of power
analysis. Using real examples from the published literature, it shows
how the methods described in this book can be applied to simple sta-
tistical tests as well as to more complex experiments and field studies.
In particular, it shows how the One-Stop F Table (Appendix B), to-
gether with the degrees of freedom tables presented in Appendices D
and E, can be used to provide a range of useful information about the
research and help in planning and interpreting research in the behav-
ioral and social sciences.

The discussion begins with a detailed examination of two studies
that used relatively simple statistical analyses (i.e., t tests and correla-
tions), and shows how power analysis sheds light on the strengths and
weaknesses, as well as the meaning of these studies. Next, it considers
more complex statistical analyses, including factorial analyses of vari-
ance and multiple regression analysis, and shows how the tables de-
veloped in this book can be applied in analyzing these studies.

SIMPLE STATISTICAL TESTS

T Tests

Perhaps the most familiar statistical problem involves the compari-
son of the mean scores of subjects who receive some treatment with
the mean scores of subjects who do not, via the t test. A research de-
sign in which subjects are randomly assigned to treatment and con-
84
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trol conditions is very easy to implement and can provide very
clear-cut and convincing answers to what are sometimes quite com-
plex questions. To illustrate the many applications of statistical power
analysis in studies employing this design, take a look at a study of the
effects of regular exercise on placental growth rates in pregnant
women (Clapp & Rizk, 1992).

Clapp and Rizk (1992) measured placental volumes in 18 healthy
women who maintained a regular routine of exercise during preg-
nancy. Nine of the women engaged in aerobics, 4 ran, and 5 swam. The
control group comprised 16 females who did not engage in such a reg-
imen. Placental volumes were measured using modern ultrasound
techniques at 16, 20, and 24 weeks gestation. Results of the study are
reproduced in Table 5.1.

Two aspects of this study are especially noteworthy. First, the sam-
ple is small (i.e., N = 34). In most cases, this would mean very low
power levels. However, in this study, the effects are quite strong. In the
three time periods studied, exercise accounted for between 29% and
47% of the variance in placental volume (d ranges from 1.71 to 2.41).
Because the apparent effects of exercise were quite substantial, it
should be easy to rule out the hypothesis that the treatment has no ef-
fect (traditional null), or even that the true effects of exercise are at
best small (minimum-effect hypothesis).

Traditional Versus Minimum-Effect Tests. This t test in this study has 32 de-
grees of freedom; if it is squared, the statistic is distributed as F with 1
and 32 degrees of freedom. The One-Stop F Table has entries for 1 and

TABLE 5.1

Placental Volumes Reported by Clapp and Rizk (1992)

Control Treatment
Week (N = 16) (N = 18) t F PV

16

20

24

106 (18)

186 (46)

270 (58)

141 (34)

265 (67)

410 (87)

3.68

3.96

5.45

13.55

15.66

29.66

.29

.33

.47

1.94

1.71

2.41

Note: Volumes are expressed in cm3. Standard deviations are shown n parentheses.
Note that d represents the mean difference divided by the control group SD. Use of
pooled SD values yields somewhat smaller d values, but they will nevertheless
exceed conventional benchmarks for "large" effects.

d
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30 and for 1 and 40 degrees of freedom, but none for 1 and 32 degrees of
freedom, meaning that it is necessary to interpolate to analyze these re-
sults. As can be seen in the One-Stop F Table, critical F values for the tra-
ditional null hypothesis at 1 and 30 degrees of freedom for a = .05 and
.01 are 4.16 and 7.56, respectively. The corresponding values at 1 and
40 degrees of freedom are as 4.08 and 7.31. Using Equation 9 in chapter
2, the a = .05 and .01 critical values for 1 and 32 degrees of freedom
when testing the traditional null hypothesis are 4.14 and 7.51. All of the
observed F values in Table 5.1 are greater than 7.51, so the traditional
null can be rejected at the .01 level and it may be concluded that regular
exercise has some impact on placental volume.

The study conclusively rules out the possibility that exercise has no
effect, and the data suggests that the actual effect is quite large. How-
ever, it is always possible that the true effect is small, and the large PV
and d values observed here represent chance fluctuations in a process
that usually produces only a small effect. You can use the One-Stop F
Table to test the hypothesis that the effects of treatments are negligi-
ble, or perhaps small to moderate.

Again, using Equation 9 from chapter 2 to interpolate, the critical F
(a = .05) for the minimum-effect null hypothesis that the effect is
small to medium in size (i.e., the null is that treatments account for no
more than 5% of the variance in outcomes) is 9.52. All F values in Ta-
ble 4.1 exceed 9.52, so the minimum-effect null hypothesis that the ef-
fects of treatments are no greater than small to moderate can be
rejected with a 95% level of confidence. This hypothesis can also be re-
jected at the .01 level for mean placental volumes at 20 and 24 weeks
(criticalF= 15.26; observedF= 15.66 and 29.44 at 20 and 24 weeks,
respectively). That is, there is 99% confidence that the effects of treat-
ments exceed the definition of "small to moderate."

Power Estimation. Assume, as the results of this study suggest, that the
effects of maternal exercise on placental volume are substantial (e.g.,
exercise accounts for 25% of the variance in placental volume). If this
assumption is true, then this study possesses very high levels of power
for rejecting the traditional null. With 1 and 32 degrees of freedom, an
effect size of PV = .25 has an F equivalent value of 10.66. The critical F
for achieving a power of .80 at a = .05 in this study is 8.3. The power to
reject the hypothesis that treatments account for less than 1% of the
variance in the population is also well in excess of .80; the critical F for
power of .80 in testing this minimum-effect hypothesis is 10.12.

In addition to placental volume, Clapp and Rizk (1992) examined a
range of other dependent variables for the women in this study. If exer-
cise could function as a viable treatment of fetal under- or over-growth,
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it might be expected to have some effect on the final birthweight of the
babies as well. In this case, Clapp and Rizk (1992) reported the mean
birth weight of babies for women in the control group as 3,553 gm (SD
= 309) compared to 3,408 gm (SD = 445) for women in the treatment
group. Reference to the One-Stop F Table shows that when testing hy-
potheses about birthweight, the study cannot even reject the traditional
null hypothesis [F (1, 32) = 1.19, p < .05].

One possible explanation for this finding is low power. If the true ef-
fect of exercise on birthweight (as opposed to placental volume) is
small, then power will be well below .50 in this study. For example, if it
is assumed that the true effect of exercise on birthweight meets the
conventional definition for a small effect (i.e., PV = .01), the F equiva-
lent in this study is less than .32, whereas the critical F for a power of
.50 to reject the traditional null at the .05 level is 4.03. Thus the power
of this study to detect traditionally significant differences in
birthweight is much less than .50 (about .09 in fact). Of course, the
power to detect substantively meaningful differences is even lower.

Sample Size Estimation. How many subjects would be required to reli-
ably detect differences in birthweight as a result of exercise during
pregnancy? In order to answer this question, refer to Appendices D
and E, which help in determining sample sizes needed, given that a =
.05 and the desired level of power is .80. If it is assumed that the effect
of exercise on birthweight is small (PV = .01, d = .20), then about 777
subjects in total (i.e., N - dfhyp + dferr; for the t test, dfhyp = 1), or
about 389 subjects in each group (i.e., 777/2), will be needed to
achieve this level of power in tests of the traditional null hypothesis.

The power analyses conducted here suggest that the Clapp and
Rizk (1992) study was well suited for answering questions about the
effect of exercise on placental volume, which was its major focus.
Power exceeded .80 for tests of both traditional and minimum-effect
null hypotheses. However, the sample size is quite inadequate for an-
swering questions about the effects of exercise on birthweight. Be-
cause a small effect might reasonably be expected here, huge samples
are probably needed to provide adequate power.

Correlations

McDaniel (1988) used very large samples to study the validity mea-
sures of preemployment drug use as predictors of job suitability in the
military. Validity coefficients for preemployment use of drugs (e.g.,
marijuana, cocaine, various stimulants, and depressants) were calcu-
lated in samples ranging in size from 9,224 to 9,355 subjects. As
might be expected, the correlations were all "statistically significant,"
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and an incautious reading of these "significance" tests might mislead
readers when arriving at conclusions about the value of these tests.

Several of the validities reported by McDaniel (1988) are shown in
Table 5.2. These results are almost beyond the scope of the One-Stop
F Table, but interpolating between dferr = 1,000 and dferr = 10,000al-
lows for the rejection of the traditional null hypothesis in every case
at the .01 level. The interpolated critical F value for a = .01 at 1 and
9,224 degrees of freedom is 6.64, which is much smaller than any of
these observed F values. However, as noted later, the tests are signifi-
cant because of the enormous samples involved, not because of the
size of the effect.

Although significant in the traditional sense, McDaniel's (1988) va-
lidities are probably not meaningful in any substantive sense, and, as
the author himself noted, employers would be better advised to base
their employment decision on information other than applicant's pre-
vious history of drug use. This study is an excellent example of the pit-
falls of relying on tests of the traditional null hypothesis. These
correlations are all "significant,", and it is all too easy to confuse "sig-
nificant" with "meaningful." As is noted later, these correlations are so
small that they should probably be ignored altogether.

Traditional Versus Minimum-Effect Jests. An examination of Table 5.2 shows
just how small these validities are, accounting for less than one half
of a percent of the variance in job suitability in each case. This fact is
reflected in the One-Stop F Table as well. At 1 and 9,224 degrees of
freedom, the interpolated critical F for rejecting the null hypothesis
that the effect is negligibly small (i.e., 1% or less of the variance) is
126.1, well above any of the observed F values. In other words, none
of the validities reaches the level designated as "trivial." Although

TABLE 5.2
Predictive Validity of Preemployment Drug Use Reported by McDaniel (1988)

Drug N Validity PV t

Marijuana

Cocaine

Stimulants

Depressants

9,355

9,224

9,286

9,267

.07

.04

.07

.07

.0049

.0016

.0049

.0049

6.79

3.85

6.76

6.76

46.06

14.81

45.73

45.63
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they are significantly different from zero, it is clear that the relation
between these tests and job suitability is so weak that the variables
could be treated as virtually independent.

This example illustrates an important feature of minimum-effect
null hypotheses. Unlike the traditional null, a minimum-effect null
cannot necessarily be rejected simply by collecting more data. If an
effect is genuinely negligible, it will continue to be negligible no mat-
ter how many subjects are tested. This phenomenon is reflected in
the One-Stop Table by the fact that critical F values for the 1% and
5% minimum-effect nulls do not asymptote as d f e r r increases. As you
can see, as dferr gets very large, the critical values for minimum-effect
nulls keep pace with the increase and do not allow for rejection of the
minimum-effect null hypothesis unless the effect is genuinely mean-
ingful. Herein lies another important advantage of minimum-effect
null hypothesis testing over traditional null hypothesis testing. When
testing a minimum-effect null hypothesis, rejection cannot be guar-
anteed simply by collecting a large enough sample.

Power Estimation. As noted earlier, the large samples employed in
this study give tremendous power in tests of the traditional null hy-
pothesis. If it is assumed that the relation between preemployment
tests and job suitability is only one half as large as the conventional
definition of a small effect (i.e., PV = .005), then power would still
be in excess of .80 for all of the tests reported in Table 4.2. With N =
9,224 and an assumed effect of PV = .005, the F equivalent is 46.35,
whereas the critical F for achieving power of .80 is 7.81. It is little
wonder that the author of this study rejected the traditional null hy-
pothesis. Even if the true effect is absolutely trivial, there is still
plenty of power for rejecting the hypothesis that there is no effect
whatsoever.

In contrast, if the hypothesis to be tested is that these tests account for
1% or less of the variance in suitability, McDaniel's study does not
achieve power of even .50; to reach this level of power for samples this
large would require an F of over 120. As noted earlier, if the samples in-
cluded 90,000 rather than 9,000 individuals, researchers still would not
have power for rejecting a minimum-effect null with such data. The effect
is much too small to be sensibly described as "meaningful," and no mat-
ter how large the sample, it should still be small. The fact that a study can
never attain the power needed to reject a minimum-effect hypothesis
when the effect is in fact negligible is neatly illustrated with this study.
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STATISTICAL TESTS IN COMPLEX EXPERIMENTS

ANOVA

In a meticulously designed study, Martin, Mackenzie, Lovegrove, and
McNicol (1993) examined the effect of tinted lenses on the reading per-
formance of children with specific reading disabilities (SRDs). This
treatment was first suggested by Irlen (1983), who distinguished a
condition called "scotopic sensitivity syndrome" that could be amelio-
rated to some degree by prescription of lenses of certain tints. Contro-
versy surrounds this treatment because it seems highly unlikely to
many psychologists that filtering a few wavelengths from the percep-
tual array could have any impact on the higher cognitive processes as-
sociated with reading (Evans & Drasdo, 1991). Irlen (1983) proposed
a mechanism involving perceptual distortions at certain wavelengths
on the retina, but other authors have attributed any improvement in
reading to placebo effects (Cotton & Evans, 1990; Winter, 1987).

From an original sample of 300, Martin et al. (1993) selected 60
subjects for further study. Twenty subjects were normal readers, 20
were SRDs who could be treated by tinted lenses, and 20 were SRDs
deemed unsuitable for the treatment. The sample selection process
controlled for such variables as native language, eyesight, intelli-
gence, behavioral disorders, organic problems, and exposure to pre-
vious therapies. The three groups were compared on three occasions
(pretest, posttest, and follow-up) using the Neale Analysis of Reading
Ability (Neale, 1973), which provided measures of reading accuracy
and comprehension. A posttest occurred one year after the pretest
and follow-up occurred 6 months later. Although the sample in this
study was small, the authors were able to achieve substantial sensi-
tivity because of their careful procedures and because they used a re-
peated measures design, in which multiple observations were
obtained from each subject.

The data in this study were analyzed using a 3 x 3 analysis of vari-
ance. Martin et al. (1993) reported a significant main effect for Groups
on accuracy [F (2, 57) = 65.57] and comprehension [F (2, 57) = 7.72].
The main effect for Occasion was also significant in each case [F (2,
114) = 24.99 for Accuracy and F (2, 114) = 36.43 for Comprehen-
sion]. The One-Stop F Table contains a range of useful information
that helps put these results in perspective.

Power Estimation: Main Effects. There are good reasons to believe that the
main effects in this study are large, and if this is true, the power of all
main effect tests was extremely high. For the Groups main effect, the
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critical F value for achieving power of .80 to reject the traditional null (a
= .05) is 5.06. The F equivalent for a large effect in this study is 9.50,
suggesting power well in excess of .80. Power was also greater than .80
for rejecting (at the .05 level) the minimum-effect null hypothesis that
main effects account for 1% or less of the variance in treatments. Here,
the critical F value was 6.19. However, in tests of the Groups main ef-
fect, power is lower than .80 for tests of the minimum-effect null for a
small to medium effect (i.e., that treatments account for less than 5% of
the variance in the population; the critical F = 9.76).

The same conclusions can be drawn about the Occassions main ef-
fect. In this case, the critical F value for achieving power of .80 to reject
the 1% minimum-effect null hypothesis at the.05 level was 6.96; for tests
of the 5% minimum-effect null, the critical value is 12.72. With dfhyp = 2
and dferr = 114, a large effect (i.e., PV = .25) yields an F equivalent value
of 19.00, which is well in excess of the critical F needed to attain power of
.80 for tests of the minimum-effect null hypotheses described earlier.

Testing Interaction Hypotheses. Examination of the main effects does not
really address the principal research question (i.e., the effects of tinted
lenses on reading performance of children with SRDs). If tinted lenses
work, then the study should observe performance of the treated SRDs
to be more similar to the untreated SRDs in the pretest condition but
more similar to the subjects without reading disorders during posttest,
hopefully persisting until follow-up. This is an interaction hypothesis.
The interaction of groups by occasion was significant in the traditional
sense for Accuracy [F (4, 114) = 2.98] and Comprehension [F (4, 114)
= 3.13]. In both cases, the critical F (a = .05) value was 2.45 for tests of
the traditional null. A minimum-effect null (i.e., that the interaction ef-
fect accounts for 1% or less of the variance: critical F = 3.10) can also
be rejected for comprehension measures.

The power of tests of these interactions can be determined from the
One-Stop F Table. Suppose, for example, that the interaction effect is
moderately large. If the population PV = . 10, the F equivalent for dfhyp
= 4, dferr = 114 is 3.16. The corresponding critical value for a power of
.80 is 3.07. Power to reject the 1% minimum-effect null is somewhat
lower. In this case, critical F values are 2.27 and 3.90 for power levels
of .5 and .8, respectively. The F equivalent for a moderate effect (i.e.,
PV = .10) falls between these critical values, so Equation 8 (chap. 2)
can be used to obtain a more accurate estimate. The power to reject
the 1% minimum-effect null is approximately .5 + .3 (3.16 - 2.27) /
(3.90-2.27) = .66. Thus, although acceptable for testing the tradi-
tional null hypothesis, this study is not quite adequate for addressing
minimum-effect null hypotheses.
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There is a reasonable level of power for detecting moderately strong
interactions. Suppose, however, that the interaction effect is small (e.g.,
PV = .01). With dfhyp = 4 and dferr = 114, the equivalent F value is now
.287, which is obviously too small to yield even marginal levels of power.
In other words, the sample in this study is large enough to give adequate
power if and only if the true interaction is at least moderately strong.

In a complex experiment, each statistical test may show a different
level of power. First, the predicted and/or actual effect sizes may differ
for main effects, simple interactions, and higher order interactions.
Second, the degrees of freedom for different tests in a model may vary,
sometimes substantially. In general, the study is most likely to have
higher power for testing main effects and lower power for testing com-
plex interactions. First, main effects usually have more degrees of
freedom. Second, main effects are usually (but not always) stronger
than complex interactions. When the focus of the study is a complex
three- or four-way interaction, very large samples might be needed to
provide adequate power.

Martin et al. (1993) concluded that tinted lenses have no effect on
reading ability, but the significant interactions just discussed do not
warrant such a conclusion. The comprehension interaction, in partic-
ular, shows that treated SRDs performed like untreated SRDs in the
pretest but improved to almost the same level as normals in the
posttest and follow-up, after lenses were applied.

Potential Difficulties in Estimating Power in Repeated Measures Designs. This study
involved obtaining multiple measures from each of several subjects,
and both hypothesis testing and power analysis in repeated measures
designs can be complicated, because these designs lead to violations of
important statistical assumptions that underlie the analysis of vari-
ance. In particular, research designs that involve obtaining multiple
measures from each respondent can lead to violations of assumptions
of independence of sphericity (i.e., the assumption that the variances of
the differences between all possible pairs of repeated measures are
equal). To obtain accurate results in such designs, both the degrees of
freedom and an estimate of the noncentrality parameter must be ad-
justed by a factor "epsilon" (E), which reflects the severity of violations of
the assumption of sphericity [e.g., the best estimate of l in repeated
measures designs is given by (e * dferr * PV/(1 - PV)); see Algina &
Keselman, 1997, for discussions of sphericity and power]. However,
this correction factor is not always reported, and cannot usually be cal-
culated on the basis of results likely to be reported in a journal article.

A conservative approach to this problem is to make a worst-case
correction (Greenhouse & Geisser, 1959). The factor £ ranges in value
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from a maximum of 1.0 (indicating no violation) to a minimum of
l/(k-1), where k represents the number of levels of the repeated mea-
sures factor. When the degrees of freedom for factors involving re-
peated measures are multiplied by epsilon, it is possible to obtain a
conservative test of significance by comparing the obtained F to the
critical value of F using the epsilon-adjusted degrees of freedom.

For example, in this study, data are collected from each subject on
three occasions, meaning that Occasion is a repeated measures factor,
and the Group X Occasion factor has a repeated measures compo-
nent. The worst-case estimate of epsilon is that £ = .5 [i.e., epsilon =
l/(3 -1)]. To use this worst-case estimate £ here, multiply the degrees
of freedom for the Occasion effect and the Occasion X Group effects by
.5 (i.e., use degrees of freedom of dfhyp = 1, dferr = 57 and dfhyp = 2, dferr
= 114, respectively, to test the Occasion and Occasion X Group effects
rather than the actual degrees of freedom of dfhyp = 2, dferr = 57 and
dfhyp - 4, dferr = 114). Similarly, adjust the estimate of l, also multiply-
ing the estimate of l by .5.

In practice, a good estimate of power can be obtained by simply
multiplying both the degrees of freedom and PV by this worst-case es-
timate of epsilon (rather than directly adjusting your estimate of l). A
comparison of the power estimate obtained without any epsilon cor-
rection (the power estimates in this example did not include any cor-
rection for violations of the sphericity assumption) with the power
estimate obtained making a worst-case assumption about violations
will provide a pretty good idea of the range of power values that would
be reasonable to expect.

Multiple Regression

Bunce and West (1995) examined the role of personality factors (pro-
pensity to innovate, rule independence, intrinsic job motivation) and
group climate factors (support for innovation, shared vision, task ori-
entation, participation in decision making) in explaining innovation
among health service workers. They carried out a 17-month,
three-stage longitudinal study, and like most longitudinal studies, suf-
fered significant loss of data (subject mortality) across time. Their N
dropped from 435 at Stage 1 to 281 and 148 at Stages 2 and 3. Incom-
plete data reduced the effective sample size for several analyses further;
several critical analyses appear to be based on a set of 76 respondents.

One analysis used Stage 1 innovation, personality factors, and
group factors as predictors in a hierarchical regression model, where
the dependent variable was innovation at Stage 2. The results of this
analysis are summarized in Table 5.3.
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TABLE 5.3

Hierarchial Regression Results Reported in Bunce and West (1995)

Predictor R2 df F DR2 df F

Innovation — Stage 1

Personality

Group Climate

.18

.33

.39

1,75

4,72

8,68

16.73*

8.86*

5.38*

.15

.06

3,72

4,68

5.37*

1.67

* p < 05 in tests of the traditional null hypothesis

The principal hypotheses tested in this analysis were that personal-
ity accounts for variance in Stage 2 innovation not explained by inno-
vation at Stage 1, and group climate accounts for additional variance
not accounted for by personality and Stage 1 innovation. Because
Stage 1 innovation is entered first in the equation, tests of the changes
in R2 as personality and climate are added to the equation must be in-
terpreted as reflecting the influence of these factors on changes in in-
novation over time. The results suggest that personality has a
significant effect, but that group climate does not account for variance
above and beyond Stage 1 innovation and personality.

Power Estimation The results in Table 5.3 show a pattern encountered
in some previous examples, a relatively small sample combined with
some reasonably large effects (e.g., Stage 1 innovation accounts for
18% of the variance in Stage 2 innovation), which makes it difficult to
determine offhand whether or not the study will have enough power
for its stated purpose. Some quick calculations suggest that it does
not posses sufficient power to test all of the hypotheses of interest.

Rather than starting from the reported R2 and F values, suppose
the study used standard conventions for describing large, medium,
and small effects to structure the power analysis. In hierarchical re-
gression studies, the predictors are usually chosen to be relevant to
the dependent variable (which means they should each be related to
Y), and are therefore usually also intercorrelated (i.e., several vari-
ables that are all related to Y are likely to also be related to one an-
other). As a result, the study will generally find that the first variable
entered will yield a relatively large R2, and R2 will not increase as
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quickly as more variables are entered (J. Cohen & R Cohen, 1983).
This might lead researchers to expect a large effect for the first vari-
able entered, a smaller change in R2 for the next variable, and a small
change in.R2 for the last variable. Chapter 2 noted that R2 values of .25,
.10, and .01 corresponded to conventional definitions of large, me-
dium, and small effects (See Table 2.2). These values turn out to be
reasonably similar to the actual R2 and DR2 values shown in Table 4.3
(i.e., . 18, . 15, and .06, respectively). Even more to the point, the over-
all R2, which represents sum of these conventional values (i.e., R2 -
.36 = .25 + .10 + .01), is very similar to the actual overall value (i.e.,
R2 = .39) reported by Bunce and West (1995).

To estimate power for detecting R2 values of .25, .10, and .01, given
the degrees of freedom in this study, first translate the R2 values into F
equivalents, using equations shown in Table 2.1. The F equivalents
are 25.0, 3.69, and .27, respectively. There is plenty of power for test-
ing the hypothesis that R2 = .25 [ F (1, 75) = 25.0]; the critical tabled F
for this level of power is 8.01. Even when testing the minimum-effect
hypothesis that the first variable entered accounts for 5% or less of the
variance, power far exceeds .80.

There is also a reasonable level of power for testing the hypothesis
that the second variable entered into the regression equation will have
a medium effect [i.e., R2 = .10,F(3,72) = 3.69]. Interpolating between
values in the One-Stop F Table, the study would achieve power of .80
with an F value of 3.79. The F here is quite close, and the power of this
test is approximately .78.

If it is assumed that the third in a set of intercorrelated predic-
tors will generally yield a small increment in R2 (i.e., DR2 = .01),
there is clearly not enough power to test that hypothesis. To achieve
power of .50, the study would need an F of 1.68; assuming a small
effect here, F is only .27.

The conclusions reached by looking at these three conventional
values closely mirror those that would be obtained if the actual R2

values were used. The F values for the first predictor (Stage 1 innova-
tion), second predictor (personality), and third predictor (group cli-
mate) are 16.73, 5.37, and 1.67, respectively. Power easily exceeds
.80 in tests of the hypothesis that stage 1 innovation is related to
Stage 2 innovation (the critical F for this level of power is 8.01).
Power also exceeds .80 for testing the hypothesis that personality ac-
counts for variance not explained by Stage 1 innovation (the critical
F is 3.79; the observed F is 5.37). Power is just below .50 for testing
the hypothesis that group climate accounts for variance not ac-
counted for by the other two predictors (the critical F is 1.68; the ob-
served F is 1.67).
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Sample Size Estimation. The sample is certainly large enough to provide
a powerful test of the hypothesis that Stage 1 innovation predicts
Stage 2 innovation. Power is also reasonably high for testing the hy-
pothesis that adding personality to the equation yields a significant in-
crease in R2. However, a much larger sample would be needed to
provide a powerful test of the last hypothesis (i.e., that group climate
explains additional variance).

A look down the dfhyp - 4 column of the One-Stop F Table reveals
that even when dferr = 10,000, the critical F value needed to have power
of .80 is larger than 1.67. If researchers are seriously interested in pur-
suing hypotheses of this sort, truly enormous samples are necessary.

CONCLUSIONS

This chapter has provided numerous illustrations of how power
analysis can be used to help in designing and interpreting research
studies. In particular, use of the One-Stop F Table in interpreting ex-
isting studies was demonstrated. The use of Appendices D and E in
estimating sample sizes required to achieve desired levels of power
was also illustrated.

This chapter began by looking at a small sample study of the effects
of exercise during pregnancy and noted that the study was adequate
for answering questions about some dependent variables (due to the
large effect of exercise), but inadequate for answering questions about
dependent variables where a small or even moderate effect might be
expected. Next, it looked at a large sample study of the effect of
preemployment drug use on job suitability and noted that, although
statistically significant, the effects were trivially small. The futility of
trying to interpret such results was also noted.

A tightly controlled study of the effect of tinted lenses on the reading
performance of children with specific reading disabilities illustrated
the applications of statistical power analysis in a complex ANOVA.
The discussion lamented the fact that the authors did not report
power analysis information, especially given that they really wanted to
accept the null hypothesis (i.e., that using the lenses has no real ef-
fect). It identified trends in their data that were inconsistent with their
conclusions, and suggested that the use of procedures designed to
control for Type I errors may have caused more problems than they
could possibly have solved.

Finally, the use of statistical power analysis was illustrated in a
study that employed hierarchical regression techniques. This study
examined the role of individual and group factors in influencing inno-
vation; the authors suggested that group factors made no independent
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contribution to the prediction of innovation. The analysis suggests
that the study had woefully inadequate power for that purpose, and
further that very large samples would be needed to provide adequate
power. As a result, the authors' failure to reject the traditional null hy-
pothesis cannot be taken as evidence one way or another about the in-
cremental effects of group climate on innovation.



The Implications of Power Analyses

The power of a statistical test is the probability that the study reject
the null hypothesis being tested, given that this null hypothesis is in
fact wrong. As noted throughout, the traditional null hypothesis that
treatments have no effect whatsoever (or that the correlation between
two variables is precisely zero, or any other hypothesis of "no effect")
is very often wrong, and in this context the statistical power of a test is
essentially the probability that the test will lead to the correct conclu-
sion. When testing the traditional null hypothesis, it is obvious that
power should always be as high as possible. When testing a mini-
mum-effect hypothesis (e.g., that the effect of treatments is negligibly
small, but not necessarily precisely zero), the implications of varying
levels of statistical power are potentially more complex, and a wider
range of issues needs to be considered in determining how to use and
interpret statistical power analysis.

This chapter begins with a discussion of the implications of statisti-
cal power analysis for tests of both traditional and minimum-effect null
hypotheses. Next, it discusses the benefits of taking statistical power
seriously. Some of these are direct and obvious (e.g., if researchers do a
power analysis, they are less likely to conduct a study in which the odds
of failure substantially outweigh the odds of success), but there are also
a number of indirect benefits to doing power analyses that may, in the
long run, be even more important than the direct benefits. Finally, it
considers the question of whether power analysis renders the whole ex-
ercise of testing the traditional null hypothesis moot. If power is very
high (or very low), then the outcome of most statistical tests is not really

98
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in doubt, and the information from these tests might be severely limited
as power reaches either extreme.

TESTS OF THE TRADITIONAL NULL HYPOTHESIS

Chapter 1 noted that two types of errors might be possible in testing a
statistical hypothesis. First, researchers might reject the null hypoth-
esis when it is in fact true (a Type I error). Second, they might fail to re-
ject the null hypothesis when it is in fact wrong (a Type II error).
Textbooks invariably stress the need to balance one type of error
against the other (e.g., procedures that minimize Type I errors also
lead to low levels of power), but when the null hypothesis is almost
certain to be wrong there is little to be gained and much to be lost by at-
tempting to maintain such a "balance" (Murphy, 1990).

The fact that the traditional null hypothesis is so often wrong leads
to three conclusions about statistical power: (a) A study cannot have
too much power, (b) studies should take the simplest and most pain-
less route to maximizing power, and (c) tests with insufficient power
should never be done.

You Cannot Hove Too Much Power

If the null hypothesis is wrong, researchers cannot make a Type I er-
ror, and the only possible way they can make an error in statistical hy-
pothesis testing is to fail to reject H0. The reason for repeating this
point so many times is that it flies in the face of convention, where sub-
stantial attention is often devoted to the unlikely possibility that a
Type I error might occur. In tests of the traditional null, power is es-
sentially the probability that the test will reach the right conclusion
(because the traditional null is usually wrong), and there is no statisti-
cal rationale for arguing that power should not be high. There are
many practical problems with attaining high levels of power, as noted
later. However, it is always advantageous to maximize power in tests of
the traditional null hypothesis.

Maximizing Power: The Hard Way and the Easy Way

There are two practical and eminently sensible ways to attain high lev-
els of power. The easy way is to change the alpha level. As shown in
chapters 2 and 3, power is higher when a relatively lenient alpha level
is used. Traditionally, the choice of criteria for defining statistical sig-
nificance has been between alpha levels of .05 and .01. When testing
the traditional null, there is little scientific or statistical advantage to
using a stringent test, and the alpha level for tests should generally be
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set as high as possible. Unfortunately, you are likely to meet resistance
if they use alpha levels of. 10, .20, or anything other than .05 or some
other conventional figure, but this resistance is misplaced. Higher al-
pha rates yield more power, often with no meaningful increase in the
likelihood of a Type I error.

The second strategy for maximizing power is to increase the sensi-
tivity of the study, which generally implies using larger samples. Even
though this strategy is more demanding than simply changing the al-
pha level, it is strongly recommended. Large, carefully constructed
samples increase the generalizability and stability of findings, and
they decrease the possibility that sampling error will lead to meaning-
less or misleading results. There is more about this in later sections.

Whereas it is clearly harder to increase power by increasing N than
by increasing a, this strategy has the immense benefit of improving a
study. Simply changing the alpha level does nothing to enhance the
meaningfulness or interpretability of the research, but the use of large
samples helps to minimize one of the recurring problems in social sci-
ence research—the overreliance on the unstable results obtained in
small samples (Schmidt, 1992).

Tests with Insufficient Power Should Never Be Done

Suppose someone is diagnosed with an ulcer, and the doctor told the
person about a new treatment. This treatment is more likely to make
things worse than to make things better, and there are alternative
treatments available that do not have this problem. Would you try the
new treatment ? Our answer is "no," and we believe this analogy ap-
plies exactly to statistical tests of the traditional null hypothesis. If
power is low, do not carry out a test of the traditional null hypothesis.

When power is less than .50 and it is virtually certain that H0 is
wrong, the test is more likely to yield a wrong answer than a right one.
More to the point, the test is unlikely to produce new and useful
knowledge; it is more likely to mislead. If researchers were certain be-
fore the test that H0 is false, a test that rejects H0 does not tell anything
that is not already known. A test that fails to reject H0 should not
change anyone's mind either (if H0 is wrong virtually by definition, the
results of the test should not change this), but people will sometimes
be mislead by their data. Low power tests are unlikely to have any ef-
fect except to mislead and confuse researchers and readers.

TESTS OF MINIMUM-EFFECT HYPOTHESES

The alternative to testing the traditional null hypothesis that treat-
ments have no effect is to test the minimum-effect null hypothesis that
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the effect of treatments is so small that it could be safely ignored. Dif-
ferent disciplines or research areas might require substantially differ-
ent operational definitions of a "negligibly small" effect, and the
standards suggested in previous chapters and in the One-Stop F Ta-
ble (i.e., treatments accounting for less that 1%, or in some cases less
than 5%, of the variance in outcomes have negligibly small effects) will
not always apply. Nevertheless, tests of minimum-effect null hypothe-
ses are necessary if the whole enterprise of statistical hypothesis test-
ing is to prove useful.

Statistical power analysis can be used to its fullest advantage in
tests of minimum-effect null hypotheses. Because the hypothesis be-
ing tested may very well be true, it becomes important to develop spe-
cific procedures and criteria for "accepting the null," or determining
when the evidence is consistent or inconsistent with the proposition
that the effects of a particular treatment are indeed negligible; power
analysis is extremely useful for this purpose. It also becomes impor-
tant to give serious consideration to an issue that is usually (and in-
correctly) presented in the context of traditional null hypothesis tests
(i.e., the appropriate balance between Type I and Type II errors).

Accepting the Null

In traditional null hypothesis testing, the idea of accepting the null hy-
pothesis is sometimes treated as a sort of heresy. Rather than allowing
researchers to accept the hypothesis that treatments have no effect,
the traditional framework usually leaves them with two options: de-
ciding that there is sufficient evidence to reject the null (i.e., a signifi-
cant outcome), and deciding that there is not yet enough evidence to
reject the null (i.e., a nonsignificant result). Because researchers al-
ready know that the traditional null is almost certain to be false, the
fact that they have not yet accumulated enough evidence to confirm
this fact tells more about the study than about the substantive phe-
nomenon being studied.

As noted throughout, power is substantially affected by the size of
the sample. If N is very small, researchers will not reject the null, no
matter what research question they are pursuing. If N is large enough,
they will reject the traditional null, again no matter what research ques-
tion they are pursuing. It is hard to resist the conclusion that tests of the
traditional null hypothesis are little more that indirect measures of the
sample size! In tests of the traditional null, the most logical interpreta-
tion of a nonsignificant result is that the sample is too small.

Occasionally, the door is left open for treating nonsignificant results
as meaningful. For example, some journals allow for the possibility of
publishing nonsignificant results, at least under some conditions
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(e.g., the inaugural issue of Human Performance included an editorial
suggesting that nonsignificant results would be treated as meaningful
if specific research design criteria, including a demonstration of ade-
quate statistical power, were met). The argument that is sometimes of-
fered is that if well-designed studies fail to detect an effect, then this
might provide some evidence that the effect is likely to be a very small
one, and the null hypothesis might be very close to being true, even if
the effect of treatments is not precisely zero. Recently, Bayesian ap-
proaches have been applied to the problem of statistically demon-
strating that an effect is so small that it should be effectively ignored
(Rouanet, 1996). Nevertheless, the bias against "accepting the null"
runs so strong in tests of the traditional null hypothesis that this
framework simply does not leave any appealing alternative when the
effect of treatments is negligibly small. Researchers will either collect
a very large sample and reject the null (which may mislead them into
thinking that the effect of treatments is something other than trivial)
or they will fail to reject it and perhaps go out and collect more data
about an essentially meaningless question.

In tests of minimum-effect hypotheses, there is a realistic possibil-
ity that the hypothesis being tested (e.g., that the effect of treatments is
at best negligible) is indeed true, and there is a real need to develop
procedures or conventions for deciding when to "accept the null."
Power analysis plays a critical role in determining and defining those
procedures or conventions.

Suppose the hypothesis being tested is that the effect of treatments
is at best negligible (e.g., treatments account for 1% or less of the vari-
ance in outcomes). A powerful study could provide strong evidence
that this hypothesis is in fact true. For example, if power is .80, then
this translates into odds of 4 to 1 that a statistical test will reject this
hypothesis if it is in fact false. Failure to reject the null under these
conditions can mean only one of two things: the null really is true, or
the null is false, and this is that one test in five that yields the wrong re-
sult. The most logical conclusion to reach in this study is that the ef-
fects are negligibly small.

As noted in chapter 3, a complete evaluation of the meaning of the
outcomes of statistical tests requires some knowledge about the prob-
ability that the null hypothesis being tested actually is true (i.e., the
prior probability of H0). The central weakness of traditional null hy-
pothesis testing is that this prior probability is thought or defined to
be vanishingly small, and perhaps zero (Murphy, 1990). If this prior
probability is zero, then tests of the null hypothesis cannot provide
much useful information.

The central weakness of the alternative approach described in this
book, in which minimum-effect hypotheses are framed and tested, is
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that this prior probability is generally unknown. In chapter 3 noted
that the prior probability of the traditional null hypothesis would nec-
essarily be very low, and by most definitions is zero. It is likely that the
prior probability of a minimum-effect null will also be somewhat low,
especially if the study is testing the hypothesis that the effect of treat-
ments is at best negligible. The rationale for believing that this prior
will be small is that most treatments in the social and behavioral sci-
ences do indeed have an effect. Chapter 1 noted Lipsey and Wilson's
(1993) review of over 300 meta-analyses of research studying the effi-
cacy of psychological, educational, and behavioral treatments. These
meta-analyses summarize the results of thousands of studies in areas
ranging from smoking cessation success rates to the effectiveness of
computer-aided instruction. Over 85% of the meta-analyses they sum-
marized reported effects that exceeded conventional criteria for
"small effects" (i.e., d = .20 or PV = .01 or less). It is clear from the
massive body of research summarized in Lipsey and Wilson that a
broad range of treatments and applications in the social and behav-
ioral sciences have at least some effect, and the likelihood that a new
treatment will have an absolutely negligible effect seems small, espe-
cially if the new treatment is solidly based in theory and research.

Balancing Errors in Testing Minimum-Effect Hypotheses

In tests of the traditional null hypothesis, Type I errors are practically
impossible and there is virtually nothing to be lost by setting alpha as
high as possible. In tests of the minimum-effect hypothesis, the strat-
egy of setting alpha as high as possible is no longer appropriate. The
whole distinction between traditional and minimum-effect null hy-
potheses is that there is some realistic possibility that a minimum-ef-
fect null is true, and it is therefore possible to make a Type I error.

Although Type I errors are a real possibility in tests of minimum-ef-
fect null hypotheses, this does not mean that power should be ignored
in carrying out these tests. The possibility of Type I errors should not
blind researchers to the substantial likelihood that they will make
Type II errors if they choose an unduly stringent alpha level. Choose
any cell of the One-Stop F Table in Appendix B, and it becomes evident
that (a) a larger F value is needed to reject the a minimum-effect null
than to reject the traditional null, given the same alpha level, and (b) a
larger F value is needed to reject the hypothesis that effects are small
to moderate (e.g., they account for 5% or less of the variance) than to
reject the hypothesis that these effects are negligibly small (i.e., they
account for 1% or less of the variance). That is, all other things being
equal, it is harder to reject a minimum-effect hypothesis than to reject
the hypothesis that treatments have no effect whatsoever. The more
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demanding the hypothesis (e.g., 5% vs. 1% as the upper bound to be
tested), the harder it is to reject H0. So, there is usually no good reason
to make things even more difficult than they already are by choosing
an unrealistically stringent alpha level. Earlier, it was suggested that
when testing the traditional null hypothesis, the .01 level should usu-
ally be avoided. The same advice holds for tests of minimum-effect hy-
pothesis; the .01 alpha level should still be avoided in most cases.

A two-part test may be used to determine whether to use an alpha
level of .01 rather than .05. First, .01 makes sense only if the conse-
quences of a Type I error are relatively serious. Chapter 3 discussed
concrete ways of comparing the perceived seriousness of Type I and
Type II errors, and noted that researchers often act as if falsely reject-
ing the null is much more serious than failing to reject the null when
necessary. This may well be true in some settings, but before deciding
to set a stringent alpha level (thus markedly decreasing power), ex-
plicitly consider the relative costs of the two errors. Choose .01 only if
there is a good reason to believe that a Type I error is substantially
more serious than a Type II error.

Second, .01 makes sense only if the prior probability that the null hy-
pothesis is true is reasonably high. That is, if the hypothesis to be tested
is that a treatment has at most a negligible effect (e.g., it accounts for 1 %
or less of the variance in outcomes), the study should be concerned
with Type I errors only if there is some realistic possibility that the ef-
fects of treatments are indeed trivial. Finally, keep in mind that this is a
two-part test. Use the .01 level rather than the .05 level only if the conse-
quences of a Type I error are large and the possibility that one might ac-
tually occur are substantial. In all other cases, use .05 as an alpha level,
and use an even more lenient alpha level whenever possible.

POWER ANALYSIS: BENEFITS, COSTS, AND IMPLICATIONS FOR HYPOTHESIS TESTING

If power analysis is taken seriously, there will be fundamental
changes in the design, execution, and interpretation of research in
the social and behavioral sciences. Most of these changes should be
beneficial, and this discussion advocates power analysis. As noted
later, the indirect benefits of power analysis may prove, in the long
run, even more important than the direct benefits of adopting this
approach. There are, of course, some costs associated with incorpo-
rating power analysis in the design and interpretation of research;
however, the benefits still substantially outweigh the costs. Finally, it
is useful to consider the implications of having extreme levels of
power (either extremely high or extremely low) when conducting sta-
tistical hypothesis tests.
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Direct Benefits of Power Analysis

As noted in chapter 1, power analysis can be used as both a planning
tool (e.g., determining how many subjects should be included in a
study) and a diagnostic tool (e.g., making sense out of previous stud-
ies that have either reported or failed to report significant results). In-
dividuals who incorporate statistical power analysis into their
research repertoire are better equipped to both plan and diagnose re-
search studies, and they directly benefit from the information pro-
vided by power analyses.

Planning Research Statistical power analysis provides a rational
framework for making important decisions about the design and
scope of a study. To be sure, there are many subjective decisions that
must be made in applying power analysis (e.g., what effect size is an-
ticipated, what alpha level is best), and the techniques described in
this book do not represent a foolproof formula for making decisions
about research design (e.g., choosing between repeated measures or
between-subjects designs) or sample size. The advantage of power
analysis over other methods of making these important decisions,
which are often made on the basis of force of habit, or by following
the lead of other researchers, is that it makes explicit the conse-
quences of these design choices for a study. If researchers are seri-
ously interested in rejecting the null hypothesis, they think a power
analysis is absolutely necessary in making good choices about study
design and sample size.

Power analysis also highlights the importance of a decision that is
usually ignored, or made solely on the basis of conventions in one's
field (i.e., the alpha level that defines statistical significance). The
choice of stringent criteria (e.g., a = .01) is sometimes interpreted as
scientifically rigorous, whereas the choice of less rigorous criteria
(e.g., a = . 10) is sometimes derided as "soft science." Nothing could be
farther from the truth. In fact, any decision about alpha levels implies
some wish to balance Type I and Type II errors, and power analysis is
absolutely necessary in order to make any kind of sense out of that
balance. Once researchers appreciate the implications of choosing
different alpha levels for the statistical power of their studies, they are
more likely to make sensible choices about this critical parameter.

If power analysis is taken seriously, it is likely that fewer studies
with small samples or insufficient sensitivity will be done. Thus, re-
searchers benefit substantially by knowing whether the study they
have in mind has any real likelihood of detecting treatment effects. As
noted later, the indirect benefits to the field as a whole that might come
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with a decline in small sample research are even greater than the ben-
efits to the individual researcher.

Interpreting Research. One criticism of tests of the traditional null hy-
pothesis is that they can mislead researchers and readers. Re-
searchers who uncover a significant result are likely to confuse that
with an important or meaningful result. This is hardly surprising;
most dictionary definitions of "significant" include "importance,"
"weight," or "noteworthy" as synonyms. Similarly, "nonsignificant" is
easily confused with "not important" or "nonmeaningful." As power
analysis clearly shows, very meaningful and important treatment ef-
fects are likely to be nonsignificant if the study lacks power, whereas
completely trivial effects are likely to be significant if enough data are
collected. It is impossible to sensibly interpret significant or
nonsignificant results without considering the level of statistical
power in the study that produced those results.

To give a concrete illustration, suppose a researcher reviewed a
dozen studies, all of which reported a nonsignificant correlation be-
tween attitudes toward drug use and subsequent drug consumption.
What does this mean? If the studies are all based on small samples, it
is entirely possible that there is a real and meaningful correlation be-
tween attitudes and subsequent behavior (e.g., if N = 30 and a = .05,
power for detecting a correlation as large as .30 is only .50), and the
studies simply did not have enough power to detect it. On the other
hand, if all of the studies included very large samples (e.g., N = 2,500),
it could probably be concluded that there is essentially no relation be-
tween present attitudes and future behavior. Although the traditional
null hypothesis might not be literally true in this instance, it would
have to be be very nearly true. With this much power, the studies re-
viewed would have almost certainly detected any consistent relation
between attitudes and behavior.

Indirect Benefits of Power Analysis

The widespread use of power analysis is likely to confer many indi-
rect benefits. Most notably, studies designed with statistical power
in mind are likely to use large samples and sensitive procedures.
Perhaps even more important, power analysis directs the re-
searcher's attention toward the most important parameter of all
(i.e., the effect size). The ultimate benefit of statistical power analy-
sis may be that it forces researchers to think about the strength of
the effects they study, rather than thinking only about whether or
not a particular effect is significant.
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Large Samples, Sensitive Procedures. Small samples are the bane of social
science research (J. E. Hunter & Schmidt, 1990; Schmidt, 1994).
These studies produce unstable results, which in turn produce at-
tempts to develop theories to "explain" what may be little more than
sampling error. If power analyses were routinely included in the pro-
cess of designing and planning studies, large samples would be the
norm and sampling error would not loom so large as a barrier to cu-
mulative progress in research.

Proponents of meta-analysis (e.g., Schmidt, 1994) note that by
combining the outcomes of multiple small sample studies, it is pos-
sible to draw sensible conclusions about effect sizes, even if the indi-
vidual study samples are too small to provide either sufficient power
or stable results. There is merit to this position, but there are also
two problems with this solution to the problem of small samples.
First, it creates a two-tiered structure in which the primary research-
ers do all the work, with little possibility of rewards (i.e., they do
studies that cannot be published because of insufficient power and
sensitivity) and the meta-analyst gets all the credit for amassing this
material into an interpretable whole. Second, it leaves the meta-ana-
lyst at the mercy of a pool of primary researchers. Unless there are
many studies examining exactly the question the meta-analyst wants
to answer, the only alternatives are to change the question or to ag-
gregate together studies that in fact differ in important ways. Neither
alternative seems attractive, and if power analysis becomes routine,
neither will be strictly necessary. If future studies include large sam-
ples and sensitive procedures, then the need for meta-analyses will
become less pressing than it is today.

The decision to use large samples is itself likely to improve other as-
pects of the research. For example, if researchers know that they will
have to devote considerable time and resources to data collection,
they will probably take more care to pretest, use reliable measures,
follow well-laid-out procedures, and so forth. In contrast, if running a
study amounts to little more than rounding up 25 undergraduates
and herding them to a lab, the need for careful planning, precise mea-
surement and so on. may not be pressing. In large sample research,
there may only be one chance to get things right, and researchers are
less likely to rely on shoddy measures, incomplete procedures, and so
forth. The net result of all this is that studies carried out with careful
attention to statistical power are likely to be better and more useful
than studies carried out with little regard for power.

Focus on Effect Size. A scan of social science journals confirms that the
outcomes of significance tests are routinely reported, but effect size
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information is often nowhere to be found. Statistical training tends to
focus attention onp values and significance levels, and not on the sub-
stantive question of how well our treatments, interventions, tests, and
so on, work (See Cowles, 1989, for a historical analysis of why social
scientists focus on significance tests). One of the most important ad-
vantages of statistical power analysis is that it makes it virtually im-
possible to ignore effect sizes.

The whole point of statistical analysis is to help researchers under-
stand data, and it has become increasingly clear over the years that an
exclusive focus on significance testing is an impediment to understand-
ing what the data mean (J. Cohen, 1994; Schmidt, 1994; Wilkinson et
al., 1999). Statistical power analysis forces them to think about the sort
of effect they expect, or at least about the sort of effect they want to be
able to detect, and once they start thinking along these lines, it is un-
likely they will forget to think about the sort of effect they actually did
find. If power analysis did nothing more than direct researchers' atten-
tion to the size of their effects, it would be well worth the effort.

Costs Associated With Power Analysis

Statistical power analysis brings a number of benefits, but there are
also costs. Most notably, researchers who pay attention to statistical
power will find it harder to carry out studies than researchers who do
not think about power when planning or evaluating studies. Most re-
searchers (the authors included) have done studies with small sam-
ples and insufficient power, and have "gotten away with it," in the
sense that they reported significant results. Even when power is low,
there is always some chance that you will reject H0, and a clever re-
searcher can make a career out of "getting lucky." Power analysis will
lead researchers to do fewer small sample studies, which in the long
run might mean fewer studies period. It is relatively easy to do a dozen
small sample studies, with the knowledge that some will and some
will not work. It is not so easy to do a dozen large sample studies, and
one long-term result of applying power analysis is that the sheer num-
ber of studies performed in a field might go down. This is not a bad
thing, at least if many low quality, small sample studies are replaced
with a few higher quality, large sample studies. Nevertheless, the pros-
pects for building a lengthy vita by doing dozens of studies might be di-
minished if serious attention is paid to power analysis.

The most serious cost that might be associated with the widespread
use of power analysis is an overemphasis on scientific conservatism.
If studies are hard to carry out, and require significant resources
(time, money, energy), there may be less willingness to try new ideas
and approaches, or to test creative hypotheses. The long-term pros-
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pects for scientific progress are not good if researchers are unwilling
or unable to take risks or try new ideas.

Implications of Power Analysis: Can Power Be Too High?

Throughout this book has advocated paying attention to the probabil-
ity that researchers will be able to reject a null hypothesis they believe
to be wrong (i.e., power). The pitfalls of low power are reasonably ob-
vious, but it is worth considering whether power can be too high. Sup-
pose researchers follow the advice laid out in this book, and design a
study with a very high level of power (e.g., power = .95). One implica-
tion is there is little real doubt about the outcomes of the statistical
tests; with few exceptions, the tests will yield significant outcomes.

When power is extreme (either high or low), researchers are not
likely to learn much by conducting a formal hypothesis test. This
might imply that power can be too high. This is unlikely. Even when
the outcome of a formal statistical hypothesis tests is virtually
known in advance, statistical analysis still has clear and obvious
value. First, the statistics used in hypothesis testing usually provide
an effect size estimate, or the information needed to make this esti-
mate. Even if the statistical test itself provided little new information
(with very high or very low power, researchers know how things will
turn out), the process of carrying out a statistical test usually pro-
vides information that can be used to evaluate the stability and po-
tential replicability of the results.

Consider, for example, the familiar t test. The t statistic is a ratio of
the difference between sample means to the standard error of the dif-
ference.1 If the level of power in the study is very high, then tests of the
significance of t might not be all that informative; high power means
that it will exceed the threshold for significance in virtually all cases.
However, the value of the t is still informative, because it gives re-
searchers an easy way of determining the standard error term, which
in turn can be used in forming confidence intervals. For example, if the
M1 -M2 = 10.0 and t = 2.50, then it follows that the standard error of
the difference between the means is 4.0 (i.e., 10.0/2.5), and a 95% con-
fidence interval for the difference between means would be 7.84 units
wide(i.e., 1.96 * 4.0). This confidence interval gives a very concrete in-
dication of how much variation one might expect from study to study
when comparing M1 to M2.

1The formula for t is t =
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In general, the standard error terms for test statistics tend to become
smaller as samples get larger. This is a concrete illustration of the gen-
eral principle that large samples provide stable and consistent statisti-
cal estimates, whereas small samples provide unstable estimates. Even
in settings where the significance of a particular statistical test is not in
doubt, confidence intervals provide very useful information. Obtaining
a confidence interval allows researchers to determine just how much
sampling error they might expect in statistical estimates.

The previous paragraph illustrates a distinction that is sometimes
blurred by researchers (i.e., the distinction between statistical analysis
and null hypothesis testing). Researchers in the behavioral and social
sciences have tended to overemphasize formal hypothesis tests, and
have paid too little attention to critical questions such as "how large is the
effect of the treatments studied here?" (J. Cohen, 1994; Cowles, 1989;
Wilkinson et al., 1999). Ironically, serious attention to the topic of power
analysis is likely to reduce researchers' dependence on significance test-
ing. The more researchers know about power, the more likely they are to
take steps to maximize statistical power, which means that rejecting the
null should be nearly a foregone conclusion. Once they understand that
the null hypothesis test is not the most important facet of your statistical
analysis, they are likely to turn attention to the aspects of your analysis
that are more important, such as estimating effect sizes.

Does all this mean that null hypothesis tests should be abandoned?
Probably not. First, as noted throughout this book, many of the out-
standing criticisms of the null hypothesis can be easily addressed by
shifting from tests of point hypotheses (e.g., that treatments have no ef-
fect whatsoever) to tests of range or interval hypotheses (e.g., that the ef-
fects of treatments fall within some range of values denoting small
effects). Second, the prospects for fundamental changes in research
strategies seem poor, judging from the historical record (Cowles, 1989).
Statisticians have been arguing for decades that the use of confidence in-
tervals is preferable to the use of null hypothesis tests, with little appar-
ent effect on actual research practice. Critics of null hypothesis tests
have not suggested an alternative that is both viable and that is likely to
be widely adopted. There is every indication that null hypothesis tests
are here to stay, and careful attention should be given to methods of mak-
ing the process of hypothesis testing as useful and informative as possi-
ble. Careful attention to the principles of power analysis is likely to lead
to better research and better statistical analyses.

CONCLUSIONS

Power analysis has profound implications for statistical hypothesis
testing, regardless of whether the traditional null hypothesis (i.e., that
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treatments had no effect whatsoever) or a minimum-effect null hy-
pothesis (e.g., that the effects of treatments are at best small) is tested.
In tests of the traditional null, Type I errors are very unlikely (because
the traditional null is essentially false by definition), and the only real
concern in structuring significance tests should be for maximizing
power. This can be done by collecting huge samples, or by using ex-
tremely sensitive procedures, but there is an easier way to accomplish
this goal. When testing the traditional null hypothesis, always set the
alpha level as high as possible. Unfortunately, the weight of tradition
rarely allows researchers to choose an alpha level higher than .05 (al-
pha of. 10 is seen in some social science research, but even there, it is
barely tolerated). Never choose a more stringent level, unless there is
some very unusual and compelling reason to do so.

Tests of minimum-effect null hypotheses are less familiar, but in
fact virtually everything known about hypothesis testing applies to
tests of this sort. In fact, much of what is already known about hypoth-
esis testing applies better to tests of minimum-effect null hypotheses
than to tests of the traditional null.

When testing minimum-effect null hypotheses, seriously consider
the possibility that the null hypothesis will be true. This opens the door
for what is sometimes considered statistical heresy (i.e., accepting the
null). It also opens the door to the possibility that Type I errors will be
made, which means that alpha levels, statistical tests, balancing Type I
and Type II errors, and so on have some real meaning in this context.

Power analysis has many benefits. It helps researchers make in-
formed decisions about the design of their own research (especially
about the number of cases needed and the choice of alpha levels), and
it also helps them make sense out of other researchers' significant or
nonsignificant results. However, the indirect benefits of power analy-
sis may be the most important. Power analysis is likely to lead them to
use larger samples, which in turn will often encourage them to use
better measures, more pretests, more carefully designed procedures,
and so on. Power analysis also helps to focus attention on effect sizes,
rather than focusing exclusively on the p value associated with some
statistical test. All of this is likely to improve the quality and consis-
tency of social science research.

There are some costs associated with using power analysis. In par-
ticular, is often it hard to obtain samples large enough to provide suffi-
cient power. This is especially true in studies where the central
hypothesis involves some complex higher order interaction between
multiple independent variables. It can be prohibitively difficult to ob-
tain enough power to sensibly test such hypotheses. Reliance on
power analysis may also indirectly discourage researchers from try-
ing out new concepts, hypotheses, or procedures.



112 CHAPTER 6

Throughout, this book has advocated careful attention to statistical
power. As the level of power increases, there should be less and less
doubt about the outcomes of null hypothesis tests. Ironically, careful
attention to power is likely to decrease the relative importance of null
hypothesis tests, and increase the attention paid to other aspects of
the statistical analysis, notable effect sizes, and confidence intervals.
This is a good thing. Null hypothesis testing is valuable (especially
when testing minimum-effect null hypotheses), but it should not be
the primary focus of statistical analysis. Rather, well-conducted null
hypothesis tests should be only a part of the analytic arsenal brought
to bear when attempting to determine what data really mean. Power
analysis is the first step in carrying out sensible tests of both tradi-
tional and minimum-effect null hypotheses.
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Appendix A

Working With the Noncentral F Distribution

The noncentral F distribution is hard tabulate, because it depends on
three separate parameters (dfhyp, dferr and l), but there is a reasonably
simple approximation based on the central F distribution (Horton,
1978; Patnaik, 1949; see also Tiku & Yip, 1978). The noncentral F
[F(dfhyp, dferr)] is distributed approximately as the central F [ F*(g,
dferr)], with:

and

where F(dfhyp dferrp1) is the central F value that has a probability value
of p1 Equation A2 estimates the central F that approximates any spe-
cific noncentral F value.

For example, suppose that in a study where 123 subjects are ran-
domly assigned to one of three treatments, it is found that SStreatments
= 10 and MSe = 2 (which means that R2 = .04, or treatments account
for 4% of the variance in this study). The F statistic used to test the
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hypothesis that treatments have no effect would have degrees of free-
dom of dfhyp = 2 and dferr = 120, and the value of F would be 2.50 [i.e,
MStreatments = 10/dfhyp = 10/2 = 5; F (2,120) = 5/2 = 2.50]. The sum of
squares for treatments and the mean square error provide enough
information to estimate the noncentrality parameter ( l= 10/2 =
5.0), and this in turn allows researchers to estimate the noncentralF
distribution for their study.

Suppose a study intends to test the traditional null hypothesis of no
treatment effect. The critical value of F for testing the traditional null
with degrees of freedom of 2 and 120 and a = .05 is 3.07. Using equa-
tions A1 and A2, it is found that g = 4.08, and F* (4, 120) = .877. At 4
and 120 degrees of freedom, approximately 50% of the central F dis-
tribution lies above a value of .877. Thus, the power of this statistical
test is about .50, given the effect found in the study.

Another alternative is to use a computer program specifically de-
signed for computing probabilities in the noncentral F distribution.
For example, it is possible to obtain estimates of the appropriate
noncentral F using simple functions that are built into a number of
widely used programs (e.g., SPSS, Excel). In SPSS, the statement:

calculates the percentage of the noncentral F distribution that is be-
low the value of the observed F [where l = dferr * PV/( 1 -PV)]. So, if re-
searchers wanted to test the hypothesis that treatments accounted for
1% or less of the variance in outcomes, all they would need to do
would be to insert the F obtained in the study into the previous COM-
PUTE statement (using PV = .01 to reflect the minimum effect of inter-
est). Researchers can reject the hypothesis (with a = .05) that the
treatments account for 1% or less of the variance if the value obtained
from this COMPUTE statement is .95 or greater.
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One Stop F Table
Hyp F dfhyp

dferr for 1 2 3 4 5 6 7 8 10 12 15 20 30 40 60 120
3 nil a=.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.59 8.57 8.55

nil a=.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.50 26.41 26.32 26.22
pow.5 8.26 7.21 6.78 6.54 6.39 6.29 6.22 6.16 6.12 6.08 6.02 5.97 5.91 5.86 5.82 5.80 5.76
pow.8 18.17 15.70 14.83 14.42 14.19 13.93 13.85 13.69 13.66 13.64 13.55 13.48 13.42 13.30 13.26 13.17 12.66

l%a=.05 10.43 9.70 9.37 9.19 9.07 8.99 8.93 8.88 8.84 8.81 8.77 8.72 8.67 8.63 8.60 8.58 8.55
l%a=.01 35.15 31.28 29.75 28.93 28.41 28.05 27.79 27.59 27.44 27.31 27.12 26.93 26.73 26.53 26.43 26.33 26.23

pow.5 8.53 7.33 6.85 6.60 6.44 6.33 6.25 6.19 6.14 6.10 6.04 5.98 5.92 5.86 5.83 5.81 5.79
pow.8 18.72 16.04 14.96 14.50 14.25 13.98 13.89 13.82 13.69 13.66 13.56 13.48 13.42 13.34 13.31 13.25 13.07

5%a=.05 11.72 10.30 9.76 9.48 9.30 9.18 9.09 9.02 8.97 8.92 8.86 8.79 8.73 8.66 8.63 8.59 8.56
5%a=.01 39.41 33.23 31.00 29.84 29.13 28.64 28.30 28.03 27.82 27.66 27.41 27.15 26.90 26.64 26.52 26.39 26.26

pow.5 9.57 7.82 7.17 6.83 6.62 6.48 6.38 6.30 6.24 6.19 6.12 6.04 5.97 5.89 5.86 5.82 5.80
pow.8 20.77 17.02 15.60 14.98 14.63 14.30 14.16 14.07 13.90 13.86 13.72 13.62 13.51 13.40 13.38 13.33 13.18

4 nil a=.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 575 5.72 5.69 5.66
nil a=.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.84 13.75 13.65 13.56

pow.5 6.68 5.48 5.00 4.73 4.55 4.43 4.34 4.27 4.22 4.17 4.10 4.03 3.96 3.89 3.86 3.82 3.78
pow.8 14.17 11.30 10.22 9.66 9.24 9.02 8.86 8.75 8.60 8.53 8.44 8.30 8.19 8.04 7.95 7.87 7.80

l%a=.05 8.02 7.08 6.68 6.45 6.31 6.20 6.13 6.07 6.03 5.99 5.93 5.87 5.81 5.75 5.72 5.69 5.66
l%a=.01 22.05 18.36 16.92 16.14 15.65 15.31 15.06 14.87 14.72 14.60 14.42 14.24 14.05 13.86 13.76 13.66 13.56

pow.5 6.94 5.60 5.07 4.78 4.60 4.46 4.37 4.30 4.24 4.19 4.12 4.05 3.97 3.90 3.86 3.82 3.79
pow.8 14.64 11.50 10.34 9.75 9.39 9.07 8.91 8.78 8.69 8.56 8.46 8.32 8.20 8.05 7.96 7.88 7.88

5%a=.05 9.31 7.67 7.05 6.72 6.52 6.38 6.28 6.20 6.14 6.09 6.02 5.94 5.86 579 5.75 5.71 5.67
5%a=.01 25.49 19.86 17.85 16.81 16.17 15.74 15.42 15.19 15.00 14.85 14.63 14.40 14.17 13.93 13.82 13.70 13.58

pow.5 8.05 6.10 5.39 5.01 4.77 4.61 4.50 4.40 4.33 4.28 4.19 4.10 4.02 3.93 3.88 3.84 3.80
pow.8 16.63 12.42 10.93 10.18 9.65 9.36 9.15 9.00 8.82 8.73 8.61 8.43 8.25 8.12 8.00 7.91 7.78

5 nil a=.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.73 4.68 4.62 4.56 4.50 4.46 4.43 4.40
nil a=.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.38 9.29 9.20 9.11

pow.5 5.91 4.66 4.14 3.87 3.70 3.57 3.48 3.41 3.35 3.31 3.23 3.15 3.08 3.00 2.96 2.91 2.87
pow.8 12.35 9.38 8.19 7.60 7.24 6.94 6.77 6.59 6.50 6.43 6.28 6.11 5.97 5.83 5.74 5.65 5.54

l%a=.05 6.94 5.93 5.50 5.26 5.10 4.99 4.91 4.85 4.80 4.76 4.70 4.63 4.57 4.50 4.47 4.44 4.40
l%a=.01 17.07 13.61 12.26 11.54 11.08 10.76 10.53 10.35 10.21 10.10 9.93 9.75 9.58 9.39 9.30 9.21 9.12

pow.5 6.20 4.78 4.24 3.93 3.75 3.61 3.51 3.44 3.37 3.33 3.25 3.17 3.09 3.00 2.96 2.92 2.88
pow.8 12.85 9.59 8.38 7.68 7.30 6.99 6.81 6.68 6.53 6.46 6.30 6.17 5.98 5.84 5.76 5.66 5.54

5%a=.05 8.31 6.54 5.88 5.53 5.32 5.17 5.06 4.98 4.91 4.86 4.78 4.70 4.62 4.54 4.49 4.45 4.41
5%a=.01 20.28 14.97 13.10 12.13 11.54 11.14 10.85 10.63 10.45 10.31 10.10 9.89 9.68 9.46 9.35 9.24 9.13

pow .5 7.42 5.33 4.56 4.18 3.94 3.77 3.65 3.55 3.48 3.42 3.32 3.23 3.13 3.03 2.98 2.93 2.88
pow.8 14.92 10.51 8.90 8.11 7.64 7.27 7.05 6.84 6.72 6.62 6.44 6.24 6.07 5.89 5.78 5.67 5.55



One Stop F Table
Hyp F dfhypdferr for 12 3 4 5 6 7 8 10 12 15 20 30 40 60 120

6 nil a=.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.77 3.74
nil a=.01 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.14 7.06

pow.5 5.45 4.15 3.67 3.39 3.21 3.08 2.99 2.92 2.86 2.82 2.74 2.66 2.58 2.49 2.45 2.40
pow.8 11.33 8.29 7.15 6.51 6.12 5.84 5.65 5.50 5.38 5.28 5.10 4.95 4.80 4.65 4.56 4.46

1%a=.05 6.35 5.30 4.85 4.60 4.44 4.33 4.24 4.18 4.13 4.08 4.02 3.95 3.89 3.82 3.78 3.74
1% a=.01 14.56 11.25 9.98 9.29 8.85 8.55 8.33 8.16 8.03 7.92 7.76 7.59 7.42 7.24 7.15 7.06

pow.5 5.77 4.32 3.75 3.45 3.25 3.12 3.02 2.95 2.89 2.84 2.76 2.68 2.59 2.50 2.45 2.41
pow.8 11.86 8.54 7.28 6.60 6.19 5.90 5.69 5.53 5.41 5.31 5.16 5.00 4.82 4.66 4.56 4.46

5%a=.05 7.82 5.94 5.25 4.89 4.66 4.51 4.40 4.31 4.24 4.19 4.11 4.02 3.94 3.85 3.80 3.76
5%a=.01 17.73 12.58 10.78 9.86 9.29 8.91 8.63 8.42 8.25 8.12 7.92 7.72 7.51 7.30 7.20 7.09

pow.5 7.11 4.88 4.13 3.72 3.47 3.29 3.17 3.06 2.98 2.93 2.83 2.74 2.64 2.53 2.48 2.42
pow.8 14.05 9.45 7.88 7.04 6.53 6.18 5.93 5.70 5.55 5.43 5.26 5.08 4.90 4.69 4.60 4.49

8 nil a=.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.04 3.00
nil a=.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.12 5.03

pow.5 4.94 3.63 3.12 2.82 2.66 2.52 2.41 2.36 2.30 2.24 2.18 2.11 2.04 1.95 1.91 1.86
pow.8 10.22 7.17 5.99 5.33 4.95 4.65 4.44 4.30 4.16 4.05 3.91 3.75 3.59 3.41 3.33 3.23

l%a=.05 5.74 4.64 4.18 3.92 3.75 3.63 3.54 3.47 3.42 3.37 3.31 3.24 3.16 3.09 3.05 3.01
l%a=.0l 12.14 8.99 7.79 7.15 6.74 6.46 6.25 6.09 5.96 5.86 5.70 5.54 5.38 5.21 5.13 5.04

pow.5 5.36 3.79 3.22 2.88 2.71 2.56 2.45 2.39 2.32 2.29 2.20 2.13 2.05 1.96 1.91 1.86
pow.8 10.86 7.42 6.14 5.44 5.03 4.72 4.49 4.34 4.20 4.12 3.93 3.77 3.60 3.42 3.34 3.23

5%a=.05 7.44 5.37 4.62 4.24 3.99 3.83 3.71 3.62 3.55 3.49 3.40 3.31 3.22 3.12 3.07 3.03
5%a=.01 15.41 10.35 8.61 7.72 7.18 6.81 6.54 6.34 6.19 6.06 5.86 5.67 5.47 5.27 5.17 5.07

pow.5 6.94 4.48 3.65 3.20 2.92 2.76 2.62 2.54 2.45 2.38 2.30 2.20 2.10 2.00 1.94 1.88
pow.8 13.34 8.47 6.79 5.90 5.35 5.01 4.74 4.56 4.39 4.25 4.07 3.88 3.69 3.48 3.37 3.26

10 nil a=.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.84 2.77 2.70 2.66 2.62
nil a=.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5,06 4.94 4.85 4.71 4.56 4.41 4.25 4.17 4.08

pow.5 4.68 3.33 2.83 2.53 2.34 2.21 2.11 2.04 1.98 1.93 1.86 1.81 1.74 1.66 1.62 1.58
pow.8 9.65 6.58 5.40 4.75 4.34 4.05 3.84 3.68 3.55 3.44 3.28 3.14 2.97 2.78 2.69 2.59

l%a=.05 5.46 4.31 3.83 3.57 3.39 3.27 3.18 3.11 3.05 3.01 2.94 2.86 2.79 2.71 2.67 2.63
l%a=.01 11.02 7.93 6.77 6.14 5.75 5.48 5.28 5.12 5.00 4.90 4.75 4.59 4.43 4.26 4.18 4.09

pow.5 5.14 3.56 2.94 2.60 2.40 2.25 2.15 2.07 2.01 1.99 1.91 1.83 1.75 1.67 1.63 1.58
pow.8 10.37 6.89 5.57 4.87 4.42 4.12 3.90 3.73 3.59 3.51 3.34 3.16 2.98 2.79 2.71 2.60

5%a=.05 7.39 5.13 4.34 3.93 3.67 3.50 3.37 3.27 3.20 3.13 3.04 2.94 2.85 2.75 2.70 2.64
5%a=.01 14.48 9.38 7.64 6.75 6.21 5.85 5.58 5.38 5.23 5.10 4.91 4.72 4.52 4.32 4.22 4.12

pow.5 6.94 4.35 3.43 2.96 2.67 2.48 2.34 2.23 2.15 2.09 1.99 1.89 1.81 1.71 1.65 1.60
pow.8 13.14 8.06 6.28 5.37 4.81 4.44 4.16 3.95 3.79 3.66 3.46 3.26 3.07 2.85 2.74 2.63



One Stop F Table
Hyp F dfhyp

dferr for 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

12 nil a=.05 4.74 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.47 2.43 2.38 2.34
nil a=.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.70 3.62 3.54 3.45

pow.5 4.52 3.17 2.63 2.33 2.15 2.02 1.93 1.86 1.80 1.76 1.66 1.61 1.53 1.47 1.43 1.39 1.35
pow.8 9.30 6.23 5.03 4.38 3.97 3.69 3.48 3.32 3.20 3.09 2.91 2.76 2.58 2.41 2.31 2.21 2.09

l%a=.05 5.31 4.12 3.63 3.36 3.18 3.06 2.96 2.89 2.83 2.79 2.71 2.64 2.56 2.48 2.43 2.39 2.34
l%a=.01 10.40 7.34 6.19 5.57 5.19 4.92 4.72 4.57 4.45 4.35 4.20 4.04 3.88 3.72 3.63 3.54 3.45

pow.5 5.05 3.38 2.75 2.42 2.21 2.07 1.97 1.89 1.83 1.79 1.68 1.62 1.54 1.47 1.43 1.40 1.36
pow.8 10.12 6.55 5.22 4.51 4.07 3.77 3.54 3.37 3.24 3.13 2.95 2.78 2.60 2.42 2.31 2.21 2.10

5%a=.05 7.47 5.04 4.20 3.76 3.49 3.31 3.17 3.07 2.99 2.93 2.83 2.73 2.62 2.52 2.46 2.41 2.35
5%a=.01 14.07 8.88 7.12 6.23 5.68 5.31 5.05 4.85 4.69 4.56 4.37 4.18 3.98 3.78 3.68 3.57 3.47

pow.5 7.08 4.26 3.30 2.81 2.51 2.32 2.18 2.08 2.00 1.93 1.80 1.72 1.61 1.52 1.47 1.42 1.36
pow.8 13.18 7.84 6.00 5.07 4.49 4.11 3.83 3.62 3.46 3.33 3.10 2.91 2.69 2.48 2.36 2.24 2.11

14 nil a=.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.31 2.27 2.22 2.18
nil a=.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.50 3.35 3.27 3.18 3.09

pow.5 4.41 3.06 2.52 2.23 2.00 1.88 1.79 1.72 1.67 1.59 1.54 1.46 1.39 1.32 1.28 1.26 1.23
pow.8 9.06 5.99 4.80 4.16 3.72 3.44 3.23 3.07 2.95 2.82 2.67 2.50 2.33 2.14 2.04 1.95 1.83

l%a=.05 5.24 4.00 3.50 3.22 3.04 2.91 2.82 2.75 2.69 2.64 2.56 2.49 2.40 2.32 2.27 2.23 2.18
1%a=.01 10.04 6.96 5.82 5.21 4.83 4.56 4.36 4.21 4.09 3.99 3.84 3.69 3.53 3.36 3.28 3.19 3.10

pow.5 5.01 3.30 2.66 2.32 2.12 1.93 1.83 1.76 1.70 1.66 1.56 1.47 1.41 1.32 1.28 1.26 1.23
pow.8 9.98 6.35 5.01 4.30 3.85 3.52 3.30 3.13 3.00 2.89 2.71 2.53 2.35 2.15 2.05 1.95 1.84

5%a=.05 7.62 5.02 4.13 3.66 3.38 3.19 3.05 2.94 2.86 2.79 2.69 2.58 2.47 2.36 2.31 2.25 2.19
5%a=.01 13.93 8.61 6.82 5.91 5.36 4.98 4.72 4.51 4.35 4.22 4.03 3.83 3.63 3.43 3.33 3.22 3.11

pow.5 7.25 4.27 3.26 2.76 2.45 2.20 2.06 1.96 1.88 1.78 1.69 1.58 1.48 1.37 1.32 1.29 1.25
pow.8 13.32 7.76 5.86 4.90 4.32 3.89 3.61 3.40 3.23 3.08 2.88 2.66 2.45 2.22 2.10 1.98 1.85

16 nil a=.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.27 2.19 2.15 2.10 2.06
nil a=.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.10 3.02 2.93 2.84

pow.5 4.33 2.98 2.39 2.10 1.92 1.80 1.67 1.61 1.56 1.53 1.44 1.36 1.28 1.22 1.18 1.15 1.12
pow.8 8.88 5.83 4.61 3.97 3.56 3.28 3.05 2.89 2.77 2.67 2.49 2.32 2.14 1.96 1.86 1.76 1.64

l%a=.05 5.20 3.92 3.41 3.13 2.94 2.81 2.72 2.64 2.58 2.53 2.46 2.38 2.29 2.20 2.16 2.11 2.06
l%a=.01 9.81 6.71 5.57 4.96 4.58 4.31 4.12 3.97 3.85 3.75 3.60 3.45 3.29 3.12 3.03 2.94 2.85

pow.5 5.00 3.25 2.60 2.26 2.00 1.86 1.77 1.65 1.60 1.56 1.46 1.38 1.29 1.23 1.18 1.15 1.13
pow.8 9.90 6.22 4.87 4.15 3.68 3.37 3.15 2.95 2.82 2.71 2.53 2.35 2.16 1.98 1.87 1.76 1.65

5%a=.05 7.81 5.04 4.10 3.61 3.32 3.12 2.97 2.86 2.77 2.70 2.59 2.48 2.37 2.25 2.19 2.13 2.07
5%a=.01 13.91 8.47 6.63 5.71 5.15 4.77 4.49 4.29 4.13 4.00 3.80 3.60 3.39 3.19 3.08 2.97 2.86

pow.5 7.45 4.31 3.26 2.73 2.36 2.16 2.02 1.86 1.79 1.73 1.60 1.49 1.37 1.28 1.22 1.18 1.14
pow.8 13.52 7.75 5.79 4.80 4.17 3.77 3.48 3.24 3.07 2.94 2.71 2.49 2.26 2.04 1.92 1.80 1.66



One Stop F Table

HyP F dfhypdferr for 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

18 nil a=.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.11 2.06 2.02 1.97
nil a=.01 8.28 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.92 2.84 2.75 2.66

pow.5 4.21 2.87 2.34 2.05 1.87 1.70 1.62 1.56 1.47 1.44 1.35 1.28 1.21 1.13 1.08 1.06 1.04
pow.8 8.73 5.68 4.49 3.84 3.44 3.13 2.93 2.77 2.62 2.52 2.35 2.19 2.01 1.82 1.71 1.61 1.50

1%a=.05 5.19 3.87 3.35 3.06 2.87 2.74 2.64 2.57 2.50 2.45 2.38 2.30 2.21 2.12 2.07 2.02 1.97
1%a=.01 9.67 6.54 5.39 4.78 4.40 4.13 3.94 3.79 3.67 3.57 3.42 3.27 3.11 2.94 2.85 2.76 2.66

pow.5 5.01 3.21 2.56 2.16 1.95 1.82 1.67 1.60 1.55 1.47 1.38 1.30 1.22 1.14 1.11 1.06 1.04
pow.8 9.87 6.13 4.76 4.01 3.56 3.26 3.01 2.84 2.71 2.58 2.39 2.22 2.03 1.84 1.73 1.62 1.50

5%a=.05 8.02 5.09 4.09 3.59 3.28 3.07 2.92 2.80 2.71 2.64 2.52 2.41 2.29 2.17 2.11 2.05 1.98
5%a=.01 13.99 8.40 6.52 5.58 5.00 4.62 4.34 4.13 3.97 3.83 3.63 3.43 3.22 3.01 2.90 2.79 2.68

pow.5 7.65 4.37 3.27 2.66 2.34 2.14 1.94 1.83 1.76 1.65 1.52 1.42 1.31 1.20 1.13 1.09 1.06
pow.8 13.75 7.77 5.76 4.71 4.10 3.69 3.37 3.14 2.98 2.81 2.59 2.37 2.14 1.91 1.77 1.65 1.52

20 nil a=.05 4.34 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.99 1.95 1.90
nil a=.01 8.09 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.69 2.61 2.52

pow.5 4.17 2.82 2.29 2.00 1.77 1.66 1.58 1.47 1.43 1.35 1.32 1.21 1.14 1.05 1.01 0.99 0.97
pow.8 8.63 5.58 4.39 3.75 3.32 3.04 2.83 2.65 2.53 2.41 2.26 2.07 1.90 1.70 1.60 1.50 1.38

l%a=.05 5.20 3.84 3.30 3.01 2.82 2.69 2.59 2.51 2.45 2.39 2.32 2.23 2.14 2.05 2.00 1.95 1.90
l%a=.01 9.58 6.41 5.26 4.65 4.27 4.00 3.80 3.65 3.53 3.44 3.29 3.13 2.97 2.80 2.71 2.62 2.52

pow.5 5.03 3.19 2.47 2.13 1.92 1.73 1.63 1.57 1.47 1.43 1.34 1.23 1.15 1.06 1.04 0.99 0.97
pow.8 9.87 6.07 4.66 3.93 3.48 3.14 2.92 2.75 2.59 2.49 2.31 2.11 1.92 1.72 1.62 1.51 1.39

5%a=.05 8.20 5.15 4.11 3.58 3.26 3.04 2.88 2.76 2.67 2.59 2.47 2.36 2.23 2.11 2.05 1.98 1.91
5%a=.01 14.11 8.38 6.46 5.49 4.91 4.51 4.23 4.02 3.85 3.71 3.51 3.30 3.09 2.88 2.77 2.65 2.54

pow.5 7.95 4.43 3.30 2.67 2.34 2.12 1.92 1.81 1.68 1.63 1.50 1.35 1.24 1.12 1.06 1.02 0.98
pow.8 14.02 7.82 5.75 4.68 4.05 3.63 3.30 3.08 2.88 2.74 2.51 2.27 2.04 1.79 1.66 1.54 1.40

22 nil a=.05 4.29 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.22 2.15 2.07 1.98 1.94 1.89 1.84
nil a=.01 7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.67 2.58 2.49 2.40

pow.5 4.13 2.79 2.25 1.97 1.74 1.62 1.49 1.44 1.35 1.32 1.24 1.18 1.08 1.00 0.97 0.92 0.90
pow.8 8.55 5.50 4.32 3.67 3.24 2.96 2.73 2.58 2.43 2.33 2.16 2.00 1.81 1.62 1.52 1.40 1.29

l%a=.05 5.23 3.82 3.27 2.97 2.78 2.64 2.54 2.46 2.40 2.35 2.27 2.18 2.09 2.00 1.95 1.90 1.84
l%a=.01 9.53 6.32 5.16 4.55 4.16 3.90 3.70 3.55 3.43 3.33 3.18 3.02 2.86 2.69 2.60 2.50 2.41

pow.5 5.06 3.18 2.45 2.10 1.89 1.70 1.61 1.49 1.44 1.36 1.27 1.20 1.09 1.01 0.97 0.94 0.90
pow.8 9.88 6.03 4.60 3.87 3.41 3.08 2.85 2.66 2.52 2.39 2.21 2.04 1.83 1.63 1.53 1.42 1.29

5%a=.05 8.41 5.22 4.13 3.58 3.25 3.02 2.86 2.73 2.63 2.56 2.44 2.31 2.19 2.06 1.99 1.92 1.85
5%a=.01 14.26 8.40 6.43 5.44 4.84 4.44 4.15 3.93 3.76 3.62 3.41 3.20 2.99 2.77 2.66 2.54 2.43

pow.5 8.17 4.51 3.33 2.68 2.34 2.06 1.91 1.75 1.67 1.56 1.43 1.33 1.19 1.07 1.02 0.95 0.92
pow.8 14.27 7.89 5.77 4.66 4.02 3.56 3.26 3.00 2.82 2.66 2.43 2.20 1.95 1.71 1.58 1.45 1.31



One Stop F Table
Hyp F dfhypdferr for 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

24 nil a=.05 4.25 3.40 3.01 2.78 2.62 2.51 2.42 2.35 2.30 2.25 2.18 2.11 2,03 1.94 1.89 1.84 1.79
nil a=.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.58 2.49 2.40 2.31

pow.5 4.10 2.76 2.22 1.94 1.71 1.60 1.47 1.41 1.32 1.30 1.22 1.12 1.02 0.96 0.90 0.87 0.85
pow.8 8.48 5.44 4.25 3.61 3.18 2.90 2-67 2.52 2.37 2.27 2.10 1.92 1.73 1.54 1.44 1.33 1.21

l%a=,05 5.26 3.80 3.25 2.94 2.75 2.61 2.50 2.42 2.36 2.31 2.23 2.14 2.05 1.95 1.90 1.85 1.79
l%a=.01 9.51 6.25 5.08 4.47 4.08 3.81 3.62 3.46 3.34 3.24 3.09 2.93 2.77 2.60 2.51 2.41 2.31

pow.5 5.10 3.18 2.43 2.08 1.81 1.68 1.53 1.47 1.42 1.34 1.25 1.14 1.08 0.96 0.93 0.89 0.85
pow.8 9.91 6.00 4.56 3.82 3.33 3.02 2.77 2.60 2.47 2.34 2.15 1.96 1.78 1.56 1.46 1.34 1.22

5%a=.05 8.63 5.30 4.16 3.59 3.25 3.01 2.84 2.71 2.61 2.53 2.41 2.28 2.15 2.02 1.95 1.88 1.81
5%a=.01 14.43 8.43 6.42 5.41 4.80 4.39 4.09 3.87 3.69 3.55 3.34 3.13 2.91 2.68 2.57 2.45 2.33

pow.5 8.38 4.58 3.37 2.69 2.35 2.06 1.91 1.74 1.66 1.55 1.42 1.32 1.17 1.03 0.98 0.92 0.87
pow.8 14.52 7.97 5.79 4.66 4.01 3.54 3.23 2.96 2.79 2.62 2.38 2.16 1.90 1.64 1.52 1.38 1.24

26 nil a=.05 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.26 2.22 2.15 2.07 1.99 1.90 1.85 1.80 1.75
nil a=.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.50 2.42 2.33 2.23

pow.5 4.07 2.73 2.20 1.85 1.69 1.52 1.44 1.34 1.30 1.22 1.15 1.10 1.01 0.91 0.86 0.84 0.80
pow.8 8.42 5.38 4.20 3.53 3.13 2.82 2.62 2.44 2.32 2.20 2.03 1.87 1.68 1.48 1.37 1.27 1.15

l%a=.05 5.29 3.80 3.23 2.92 2.72 2.58 2.48 2.40 2.33 2.28 2.19 2.11 2.01 1.92 1.86 1.81 1.75
l%a=.01 9.51 6.21 5.03 4.40 4.01 3.75 3.55 3.39 3.27 3.17 3.02 2.86 2.70 2.52 2.43 2.34 2.24

pow.5 5.14 3.18 2.42 2.07 1.80 1.66 1.51 1.45 1.35 1.32 1.23 1.12 1.02 0.92 0.90 0.84 0.81
pow.8 9.95 5.98 4.53 3.78 3.29 2.98 2.73 2.55 2.40 2.29 2.11 1.91 1.71 1.50 1.40 1.28 1.15

5%a=.05 8.85 5.38 4.20 3.61 3.25 3.01 2.84 2.70 2.60 2.51 2.39 2.26 2.12 1.99 1.92 1.84 1.77
5%a=.01 14.63 8.48 6.43 5.39 4.77 4.35 4.05 3.82 3.64 3.50 3.29 3.07 2.84 2.62 2.50 2.38 2.26

pow.5 8.59 4.66 3.41 2.71 2.36 2.06 1.91 1.74 1.66 1.54 1.41 1.26 1.12 1.02 0.95 0.88 0.83
pow.8 14.78 8.06 5.83 4.67 4.00 3.52 3.21 2.94 2.76 2.58 2.35 2.09 1.84 1.60 1.46 1.32 1.17

28 nil a=.05 4.19 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.23 2.19 2.12 2.04 1.96 1.87 1.82 1.77 1.71
nil a=.01 7.63 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.44 2.35 2.26 2.17

pow.5 4.05 2.71 2.18 1.83 1.67 1.50 1.42 1.32 1.28 1.21 1.13 1.04 0.95 0.90 0.83 0.79 0.77
pow.8 8.38 5.34 4.15 3.49 3.08 2.78 2.58 2.40 2.28 2.16 1.99 1.81 1.62 1.44 1.32 1.21 1.09

l%a=.05 5.33 3.80 3.22 2.90 2.70 2.56 2.45 2.37 2.30 2.25 2.17 2.08 1.98 1.89 1.83 1.78 1.72
l%a=.01 9.52 6.17 4.98 4.35 3.96 3.69 3.49 3.34 3.22 3.12 2.96 2.80 2.64 2.46 2.37 2.27 2.17

pow.5 5.19 3.19 2.42 2.06 1.78 1.65 1.50 1.43 1.33 1.30 1.17 1.11 1.01 0.91 0.86 0.82 0.77
pow.8 10.00 5.97 4.50 3.75 3.26 2.94 2.69 2.52 2.36 2.25 2.04 1.87 1.67 1.46 1.34 1.23 1.10

5%a=.05 9.07 5.47 4.25 3.64 3.26 3.01 2.83 2.70 2.59 2.50 2.37 2.24 2.10 1.96 1.89 1.81 1.73
5%a=.01 14.83 8.55 6.45 5.39 4.75 4.33 4.02 3.79 3.61 3.46 3.24 3.02 2.79 2.56 2.44 2.32 2.19

pow.5 8.80 4.74 3.45 2.74 2.37 2.07 1.91 1.74 1.59 1.54 1.41 1.25 1.11 0.98 0.91 0.85 0.78
pow.8 15.04 8.16 5.87 4.69 4.00 3.52 3.19 2.92 2.71 2.56 2.32 2.06 1.81 1.54 1.41 1.27 1.12



One Stop F Table

Hyp F dfhyp
dferr for 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

30 nil a=.05 4.16 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.79 1.74 1.68
nil a=.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.30 2.21 2.11

pow.5 4.03 2.69 2.16 1.82 1.65 1.48 1.41 1.30 1.27 1.19 1.12 1.02 0.94 0.86 0.82 0.76 0.73
pow.8 8.33 5.30 4.12 3.45 3.05 2.74 2.54 2.36 2.24 2.12 1.95 1.77 1.58 1.39 1.28 1.17 1.04

l%a=.05 5.38 3.80 3.21 2.89 2.68 2.54 2.43 2.35 2.28 2.23 2.14 2.05 1.96 1.86 1.80 1.75 1.69
l%a=.01 9.54 6.15 4.94 4.31 3.92 3.64 3.44 3.29 3.17 3.07 2.91 2.75 2.59 2.41 2.32 2.22 2.12

pow.5 5.23 3.19 2.41 2.05 1.77 1.64 1.49 1.42 1.32 1.24 1.15 1.05 0.96 0.87 0.82 0.77 0.73
pow.8 10.06 5.97 4.49 3.73 3.23 2.91 2.66 2.49 2.32 2.19 2.01 1.81 1.61 1.41 1.30 1.17 1.05

5%a=.05 9.29 5.57 4.29 3.66 3.28 3.02 2.83 2.69 2.58 2.49 2.36 2.22 2.08 1.94 1.86 1.78 1.70
5%a=.01 15.04 8-62 6-47 5.40 4.75 4.31 4.00 3.76 3.58 3.43 3.20 2.98 2.75 2.51 2.39 2.27 2.14

pow.5 9.01 4.82 3.50 2.76 2.39 2.08 1.92 1.74 1.59 1.54 1.40 1.25 1.11 0.94 0.88 0.82 0.76
pow.8 15.31 8.26 5.91 4.71 4.01 3.51 3.19 2.91 2.69 2.54 2.30 2.04 1.78 1.50 1.36 1.23 1.07

40 nil a=.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.69 1.64 1.58
nil a=.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.20 2.11 2.02 1.92

pow.5 3.97 2.63 2.02 1.76 1.52 1.42 1.29 1.25 1.16 1.08 1.02 0.93 0.86 0.76 0.70 0.65 0.61
pow.8 8.20 5.16 3.96 3.32 2.89 2.61 2.39 2.23 2.09 1.97 1.80 1.62 1.44 1.23 1.12 1.00 0.88

l%a=.05 5.64 3.85 3.21 2.86 2.64 2.49 2.38 2.29 2.22 2.16 2.07 1.97 1.87 1.77 1.71 1.65 1.58
1%a=.01 9.75 6.12 4.86 4.20 3.79 3.51 3.30 3.14 3.01 2.91 2.75 2.59 2.42 2.23 2.14 2.03 1.92

pow.5 5.49 3.26 2.42 2.04 1.75 1.54 1.45 1.33 1.22 1.20 1.12 1.01 0.88 0.77 0.71 0.66 0.61
pow.8 10.38 6.01 4.46 3.67 3.15 2.80 2.56 2.36 2.19 2.08 1.90 1.70 1.48 1.25 1.14 1.01 0.88

5%a=.05 10.44 6.01 4.56 3.83 3.39 3.09 2.88 2.72 2.59 2.49 2.34 2.19 2.03 1.86 1.78 1.69 1.60
5%a=.01 16.14 9.06 6.70 5.51 4.80 4.32 3.98 3.72 3.52 3.35 3.11 2.86 2.61 2.36 2.22 2.09 1.95

pow.5 10.00 5.35 3.73 3.00 2.49 2.15 1.97 1.77 1.61 1.55 1.35 1.19 1.05 0.88 0.80 0.72 0.63
pow.8 16.64 8.82 6.19 4.91 4.10 3.56 3.20 2.90 2.67 2.51 2.22 1.94 1.67 1.38 1.23 1.07 0.91

50 nil a=.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.95 1.87 1.78 1.68 1.63 1.57 1.51
nil a=.01 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.26 2.10 2,01 1.91 1.80

pow.5 3.93 2.59 1.99 1.72 1.49 1.39 1.26 1.15 1.13 1.06 0.99 0.91 0.79 0.70 0.63 0.60 0.54
pow.8 8.11 5.09 3.88 3.25 2.82 2.54 2.31 2.13 2.01 1.89 1.73 1.55 1.35 1.14 1.02 0.91 0.78

l%a=.05 5.93 3.94 3.24 2.87 2.63 2.47 2.35 2.26 2.19 2.12 2.03 1.93 1.83 1.71 1.65 1.59 1.52
l%a=.01 10.04 6.18 4.85 4.16 3.74 3.44 3.23 3.07 2.94 2.83 2.67 2.50 2.32 2.13 2.03 1.92 1.81

pow.5 5.76 3.35 2.46 1.97 1.75 1.54 1.44 1.32 1.21 1.18 1.04 0.94 0.81 0.71 0.67 0.60 0.54
pow.8 10.74 6.11 4.48 3.63 3.13 2.76 2.52 2.31 2.14 2.03 1.82 1.61 1.39 1.17 1.05 0.92 0.78

5%a=.05 11.39 6.50 4.84 4.02 3.53 3.20 2.96 2.78 2.64 2.53 2.36 2.19 2.01 1.83 1.74 1.64 1.54
5%a=.01 17.26 9.56 6.98 5.69 4.92 4.40 4.03 3.75 3.53 3.35 3.09 2.82 2.55 2.28 2.14 1.99 1.84

pow.5 11.09 5.76 4.08 3.16 2.61 2.23 2.03 1.82 1.65 1.58 1.37 1.20 1.00 0.84 0.76 0.66 0.57
pow.8 17.86 9.36 6.55 5.11 4.24 3.66 3.27 2.95 2.70 2.53 2.22 1.92 1.61 1.31 1.16 0.99 0.81



One Stop F Table

Hyp F dfhyp
dferr for 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

60 nil a=.05 3.99 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.83 1.75 1.65 1.59 1.53 1.47
nil a=.01 7.07 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.94 1.84 1.73

pow.5 3.90 2.57 1.97 1.70 1.47 1.30 1.24 1.13 1.04 1.04 0.91 0.84 0.78 0.65 0.58 0.54 0.48
pow.8 8.06 5.04 3.83 3.20 2.77 2.46 2.26 2.08 1.94 1.85 1.66 1.48 1.30 1.08 0.96 0.84 0.70

1%a=.05 6.24 4.04 3.29 2.90 2.64 2.47 2.35 2.25 2.17 2.11 2.01 1.91 1.80 1.68 1.62 1.55 1.47
l%a=.01 10.35 6.28 4.88 4.16 3.72 3.42 3.20 3.03 2.90 2.79 2.62 2.45 2.26 2.07 1.96 1.85 1.73

pow.5 6.04 3.44 2.50 1.99 1.76 1.54 1.37 1.31 1.20 1.11 1.03 0.93 0.80 0.70 0.63 0.55 0.50
pow.8 11.13 6.22 4.53 3.65 3.13 2.75 2.47 2.29 2.11 1.97 1.78 1.58 1.35 1.13 0.99 0.86 0.72

5%a=.05 12.49 6.94 5.14 4.23 3.68 3.31 3.05 2.86 2.70 2.58 2.39 2.20 2.01 1.82 1.72 1.61 1.50
5%a=.01 18.38 10.06 7.29 5.90 5.07 4.51 4.11 3.81 3.58 3.39 3.11 2.82 2.53 2.24 2.09 1.93 1.77

pow.5 11.97 6.30 4.33 3.33 2.82 2.41 2.11 1.88 1.77 1.62 1.39 1.21 1.01 0.84 0.72 0.61 0.53
pow.8 19.10 9.93 6.86 5.33 4.44 3.81 3.36 3.02 2.78 2.57 2.24 1.93 1.60 1.29 1.11 0.93 0.75

70 nil a=.05 3.97 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.89 1.81 1.72 1.62 1.56 1.50 1.43
nil a=.01 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 2.58 2.45 2.30 2.15 1.98 1.89 1.78 1.67

pow.5 3.88 2.55 1.95 1.68 1.46 1.28 1.23 1.12 1.03 1.02 0.90 0.82 0-72 0.60 0.58 0.51 0.45
pow.8 8.02 5.00 3.80 3.16 2.73 2.43 2.23 2.05 1.91 1.81 1.62 1.44 1.24 1.03 0.92 0.80 0.66

l%a=.05 6.57 4.14 3.35 2.92 2.66 2.48 2.35 2.25 2.17 2.10 2.00 1.89 1.78 1.66 1.59 1.52 1.44
l%a=.01 10.67 6.39 4.93 4.18 3.73 3.41 3-19 3.01 2.87 2.76 2.59 2.41 2.23 2.03 1.92 1.80 1.68

pow.5 6.32 3.54 2.55 2.11 1.78 1.55 1.37 1.32 1.20 1.11 1.03 0.93 0.80 0.66 0.59 0.52 0.45
pow.8 11.55 6.35 4.59 3.71 3.14 2.75 2.47 2.28 2.10 1.96 1.76 1.55 1.32 1.08 0.95 0.81 0.66

5%a=.05 13.34 7.42 5.45 4.43 3.84 3.44 3.16 2.94 2.77 2.64 2.44 2.23 2.03 1.81 1.71 1.59 1.48
5%a=.01 19.46 10.58 7.61 6.13 5.23 4.64 4.21 3.89 3.64 3.44 3.14 2.84 2.53 2.22 2.06 1.89 1.72

pow.5 13.03 6.69 4.56 3.60 2.94 2.50 2.18 2.02 1.82 1.66 1.49 1.23 1.02 0.80 0.72 0.61 0.50
pow.8 20.22 10.46 7.20 5.59 4.60 3.93 3.45 3.13 2.84 2.62 2.30 1.94 1.60 1.26 1.09 0.90 0.71

80 nil a=.05 3.95 3.11 2.72 2.49 2.33 2.21 2.12 2.05 2.00 1.95 1.87 1.79 1.70 1.60 1.54 1.48 1.41
nil a=.01 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.41 2.27 2.11 1.94 1.85 1.75 1.63

pow.5 3.87 2.54 1.94 1.67 1.44 1.27 1.21 1.11 1.02 0.94 0.89 0.82 0.71 0.60 0.54 0.48 0.42
pow.8 7.99 4.97 3.77 3.14 2.71 2.40 2.20 2.02 1.88 1.76 1.60 1.42 1.22 1.00 0.88 0.76 0.62

1%a=.05 6.83 4.26 3.41 2.96 2.69 2.50 2.36 2.26 2.17 2.10 2.00 1.89 1.77 1.64 1.57 1.50 1.42
l%a=.01 10.98 6.51 4.99 4.22 3.74 3.42 3.19 3.01 2.86 2.75 2.57 2.39 2.20 1.99 1.89 1.77 1.64

pow.5 6.73 3.64 2.60 2.14 1.80 1.56 1.38 1.32 1.21 1.11 1.03 0.87 0.79 0.65 0.58 0.52 0.44
pow.8 11.95 6.48 4-66 3.75 3.16 2.76 2.47 2.28 2.10 1.95 1.75 1.52 1.31 1.06 0.93 0.79 0.63

5%a=.05 14.39 7.84 5.71 4.65 4.01 3.58 3.26 3.03 2.85 2.71 2.49 2.27 2.04 1.82 1.70 1.58 1.46
5%a=.01 20.52 11.08 7.93 6.35 5.41 4.77 4.32 3.98 3.72 3.50 3.18 2.86 2.54 2.21 2.04 1.87 1.69

pow.5 13.83 7.22 4.92 3.76 3.06 2.59 2.34 2.08 1.87 1.70 1.52 1.25 1.03 0.80 0.69 0.58 0.47
pow.8 21.36 11.02 7.55 5.81 4.76 4.06 3.59 3.21 2.91 2.67 2.34 1.97 1.61 1.25 1.06 0.88 0.67



One Stop F Table
Hyp F dfhypdferr for I 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

90 nil a=.05 3.94 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.98 1.94 1.86 1.78 1.69 1.58 1.53 1.46 1.39
nil a=.01 6.92 4.85 4.01 3.53 3.23 3.01 2.84 2.72 2.61 2.52 2.39 2.24 2.09 1.91 1.82 1.72 1.60

pow.5 3.86 2.53 1.93 1.66 1.43 1.26 1.21 1.10 1.01 0.94 0.89 0.81 0.70 0.59 0.54 0.46 0.40
pow.8 7.97 4.95 3.75 3.12 2.69 2.38 2.18 2.00 1.86 1.74 1.58 1.40 1.20 0.98 0.86 0.73 0.59

l%a=.05 6.97 4.37 3.48 3.00 2.71 2.52 2.38 2.26 2.18 2.11 2.00 1.88 1.76 1.63 1.56 1.48 1.40
l%a=.01 11.29 6.64 5.06 4.26 3.77 3.43 3.19 3.01 2.86 2.74 2.56 2.38 2.18 1.97 1.86 1.74 1.61

pow.5 6.86 3.74 2.66 2.18 1.83 1.58 1.47 1.33 1.21 1.12 1.03 0.87 0.79 0.65 0.55 0.49 0.40
pow.8 12.12 6.62 4.74 3.79 3.19 2.78 2.52 2.28 2.10 1.95 1.75 1.51 1.29 1.04 0.89 0.76 0.60

5%a=.05 15.17 8.31 6.02 4.88 4.15 3.70 3.37 3.12 2.93 2.77 2.54 2.30 2.07 1.83 1.70 1.58 1.44
5%a=.01 21.57 11.59 8.25 6.59 5.58 4.92 4.44 4.08 3.80 3.57 3.24 2.90 2.55 2.21 2.03 1.85 1.66

pow.5 14.87 7.58 5.14 3.92 3.29 2.78 2.41 2.14 1.92 1.82 1.55 1.34 1.09 0.85 0.69 0.58 0.45
pow.8 22.43 11.51 7.87 6.04 4.97 4.23 3.70 3.30 2.99 2.77 2.39 2.03 1.65 1.27 1.06 0.87 0.65

100 nil a=.05 3.93 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.85 1.77 1.67 1.57 1.51 1.45 1.37
nil a=.01 6.89 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22 2.07 1.89 1.80 1.69 1.57

pow.5 3.85 2.52 1.92 1.66 1.43 1.26 1.20 1.10 1.01 0.93 0.88 0.80 0.70 0.59 0.50 0.46 0.39
pow.8 7.95 4.94 3.73 3.10 2.67 2.37 2.17 1.99 1.84 1.72 1.56 1.38 1.18 0.97 0.83 0.71 0.57

l%a=.05 7.24 4.49 3.55 3.04 2.74 2.54 2.39 2.28 2.19 2.11 2.00 1.88 1.76 1.62 1.55 1.47 1.38
l%a=.01 11.60 6.76 5.13 4.30 3.80 3.45 3.21 3.02 2.87 2.75 2.56 2.37 2.17 1.96 1.84 1.72 1.58

pow.5 7.11 3.84 2.71 2.22 1.85 1.59 1.49 1.34 1.22 1.12 1.04 0.87 0.74 0.61 0.55 0.49 0.39
pow.8 12.45 6.76 4.82 3.83 3.22 2.80 2.53 2.29 2.11 1.95 1.75 1.50 1.26 1.01 0.88 0.74 0.58

5%a=.05 16.18 8.81 6.27 5.05 4.32 3.83 3.49 3.21 3.00 2.84 2.60 2.34 2.09 1.84 1.71 1.57 1.43
5%a=.01 22.59 12.08 8.57 6.82 5.76 5.06 4.56 4.18 3.88 3.65 3.29 2.94 2.58 2.21 2.03 1.84 1.64

pow.5 15.62 7.93 5.51 4.19 3.40 2.87 2.49 2.29 2.06 1.87 1.58 1.36 Ml 0.86 0.70 0.59 0.44
pow.8 23.49 12.03 8.22 6.30 5.14 4.36 3.81 3.43 3.10 2.83 2.43 2.06 1.67 1.28 1.06 0.86 0.63

120 nil a=.05 3.91 3.07 2.68 2.45 2.29 2.17 2.09 2.01 1.96 1.91 1.83 1.75 1.66 1.55 1.49 1.43 1.35
nil a=.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.76 1.65 1.53

pow.5 3.84 2.51 1.91 1.56 1.42 1.25 1.11 1.09 1.00 0.92 0.87 0.74 0.64 0.54 0.50 0.43 0.36
pow.8 7.93 4.91 3.71 3.05 2.65 2.34 2.12 1.97 1.82 1.70 1.54 1.34 1.14 0.92 0.81 0.68 0.53

l%a=.05 7.76 4.74 3.66 3.13 2.81 2.59 2.43 2.31 2.21 2.13 2.01 1.89 1.75 1.61 1.54 1.45 1.36
1%a=.01 12.20 7.02 5.28 4.40 3.86 3.50 3.24 3.04 2.88 2.76 2.56 2.36 2.15 1.93 1.81 1.69 1.55

pow.5 7.58 4.04 2.92 2.29 1.90 1.63 1.52 1.36 1.24 1.13 1.05 0.87 0.74 0.61 0.54 0.46 0.37
pow.8 13.10 7.05 4.98 3.93 3.29 2.85 2.56 2.32 2.12 1.97 1.75 1.50 1.25 1.00 0.86 0.71 0.55

5%a=.05 17.88 9.64 6.89 5.45 4.64 4.09 3.70 3.41 3.17 2.98 2.71 2.43 2.15 1.87 1.72 1.57 1.42
5%a=.01 24.59 13.05 9.20 7.28 6.12 5.35 4.80 4.38 4.06 3.80 3.41 3.02 2.63 2.23 2.03 1.83 1.61

pow.5 17.37 8.79 5.92 4.63 3.74 3.15 2.73 2.41 2.25 2.04 1.72 1.47 1.13 0.87 0.74 0.59 0.42
pow.8 25.54 13.02 8.83 6.78 5.51 4.67 4.06 3.61 3.30 3.00 2.57 2.16 1.71 1.29 1.08 0.85 0.61



One Stop F Table
Hyp F dfhyp(dferr for 1 2 3 456 7 8 dfh y p 10 12 15 20 30 40 60 120

150 nil a=.05 3.89 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.81 1.73 1.64 1.53 1.47 1.40 1.32
nil a=.01 6.80 4.75 3.92 3.45 3.14 2.92 2.76 2.63 2.53 2.44 2.30 2.16 2.00 1.83 1.73 1.62 1.49

pow.5 3.83 2.50 1.90 1.55 1.41 1.24 1.10 1.08 0.99 0.92 0.86 0.73 0.63 0.54 0.45 0.40 0.33
pow.8 7.90 4.89 3.69 3.02 2.63 2.32 2.09 1.94 1.80 1.68 1.52 1.31 1.11 0.90 0.77 0.64 0.49

1%a=.05 8.61 5.01 3.86 3.28 2.92 2.66 2.49 2.36 2.25 2.17 2.03 1.90 1.76 1.61 1.53 1.44 1.34
1%a=.01 13.04 7.40 5.51 4.56 3.98 3.59 3.31 3.09 2.93 2.79 2.58 2.37 2.15 1.92 1.79 1.66 1.51

pow.5 8.26 4.42 3.09 2.40 1.98 1.78 1.56 1.40 1.27 1.15 1.06 0.88 0.74 0.61 0.51 0.43 0.34
pow.8 14.11 7.43 5.21 4.09 3.40 2.96 2.62 2.37 2.16 2.00 1.77 1.51 1.25 0.98 0.83 0.68 0.51

5%a=,05 20.52 10.86 7.64 6.06 5.11 4.48 4.03 3.69 3.41 3.20 2.88 2.57 2.24 1.92 1.75 1.59 1.41
5%a=.01 27.47 14.46 10.12 7.95 6.65 5.78 5.16 4.69 4.33 4.04 3.60 3.17 2.73 2.28 2.06 1.83 1.59

pow.5 19.73 10.24 6.86 5.19 4.19 3.52 3.04 2.67 2.48 2.25 1.90 1.61 1.23 0.93 0.75 0.59 0.41
pow.8 28.49 14.57 9.81 7.46 6.05 5.10 4.43 3.92 3.56 3.24 2.76 2.31 1.81 1.35 1.09 0.85 0.58

200 nil a=.05 3.88 3.04 2.65 2.42 2.26 2.14 2.05 1.98 1.93 1.88 1.80 1.71 1.62 1.51 1.45 1.38 1.30
nil a=.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.27 2.13 1.97 1.79 1.69 1.58 1.45

pow.5 3.82 2.48 1.89 1.54 1.40 1.23 1.09 1.07 0.98 0.91 0.79 0.72 0.63 0.49 0.45 0.37 0.30
pow.8 7.88 4.86 3.66 3.00 2.60 2.30 2.07 1.92 1.78 1.65 1.47 1.29 1.09 0.86 0.75 0.60 0.45

l%a=.05 9.58 5.57 4.22 3.49 3.08 2.81 2.61 2.46 2.33 2.23 2.09 1.93 1.78 1.61 1.52 1.43 1.32
1%a=.01 14.39 8.02 5.90 4.83 4.18 3.75 3.43 3.20 3.01 2.86 2.63 2.40 2.16 1.91 1.78 1.64 1.48

pow.5 9.37 4.88 3.36 2.68 2.20 1.88 1.64 1.46 1.40 1.28 1.09 0.96 0.75 0.61 0.51 0.43 0.33
pow.8 15.40 8.08 5.62 4.38 3.62 3.11 2.74 2.46 2.27 2.09 1.81 1.56 1.26 0.98 0.82 0.66 0.48

5%a=.05 24.55 12.87 8.94 7.02 5.88 5.11 4.56 4.15 3.84 3.56 3.18 2.79 2.40 2.01 1.82 1.62 1.41
5%a=.01 32.04 16.72 11.60 9.04 7.51 6.49 5.76 5.21 4.78 4.44 3.93 3.42 2.90 2.38 2.12 1.85 1.58

pow.5 23.65 11.85 8.17 6.17 4.96 4.16 3,58 3.15 2.81 2.53 2.21 1.79 1.42 1.01 0.81 0.63 0.41
pow.8 33.10 16.67 11.31 8.57 6.92 5.82 5.04 4.45 3.99 3.61 3.10 2.54 2.00 1.44 1.15 0.88 0.58

300 nil a=.05 3.86 3.03 2.63 2.40 2.24 2.13 2.04 1.97 1.91 1.86 1.78 1.70 1.60 1.49 1.43 1.36 1.27
nil a=.01 6.72 4.68 3.85 3.38 3.08 2.86 2.70 2.57 2.47 2.38 2.24 2.10 1.94 1.76 1.66 1.55 1.41

pow.5 3.80 2.47 1.88 1.53 1.39 1.22 1.09 0.98 0.97 0.90 0.78 0.72 0.62 0.48 0.41 0.37 0.26
pow.8 7.85 4.84 3.64 2.98 2.58 2.28 2.05 1.87 1.75 1.63 1.44 1.27 1.07 0.83 0.71 0.58 0.41

l%a=.05 11.62 6.54 4.85 3.97 3.43 3.08 2.84 2.65 2.51 2.38 2.20 2.02 1.83 1.64 1.54 1.43 1.31
1%a=.01 16.85 9.18 6.63 5.36 4.59 4.07 3.70 3.42 3.20 3.03 2.76 2.49 2.22 1.93 1.78 1.62 1.45

pow.5 11.36 5.83 3.97 3.17 2.56 2.17 1.89 1.67 1.50 1.45 1.23 1.01 0.84 0.62 0.51 0.43 0.30
pow.8 17.91 9.26 6.37 4.96 4.04 3.44 3.02 2.69 2.44 2.27 1.95 1.63 1.33 1.00 0.82 0.66 0.45

5%a=.05 32.04 16.65 11.52 8.94 7.35 6.32 5.59 5.05 4.62 4.28 3.77 3.25 2.74 2.22 1.97 1.70 1.44
5%a=.01 40.62 20.94 14.40 11.13 9.16 7.86 6.92 6.21 5.67 5.23 4.58 3.92 3.26 2.60 2.27 1.94 1.59

pow.5 31.22 15.66 10.47 7.87 6.49 5.42 4.66 4.09 3.64 3.29 2.75 2.29 1.73 1.22 0.96 0.70 0.43
pow.8 41.71 20.99 14.09 10.62 8.63 7.22 6.23 5.48 4.90 4.43 3.73 3.07 2.35 1.66 1.31 0.96 0.59



One Stop F Table
Hyp F dfhyp

dferr f o r 1 2 3 4 5 6 7 8 9 1 0 1 2 1 5 2 0 3 0 4 0 6 0 1 2 0

400 nil a=.05 3.85 3.02 2.63 2.39 2.24 2.12 2.03 1.96 1.90 1.85 1.77 1.69 1.59 1.48 1.42 1.35 1.26
nil a=.01 6.70 4.66 3.83 3.37 3.06 2.85 2.68 2.56 2.45 2.36 2.23 2.08 1.92 1.74 1.64 1.53 1.39

pow.5 3.80 2.47 1.88 1.52 1.38 1.21 1.08 0.97 0.97 0.90 0.78 0.71 0.62 0.48 0.41 0.34 0.25
pow.8 7.84 4.83 3.63 2.96 2.57 2.26 2.04 1.86 1.74 1.62 1.43 1.25 1.06 0.82 0.69 0.55 0.39

1%a=.05 13.49 7.44 5.43 4.42 3.78 3.35 3.07 2.85 2.68 2.54 2.32 2.11 1.90 1.68 1.56 1.44 1.30
1%a=.01 19.02 10.26 7.33 5.87 4.98 4.39 3.97 3.65 3.40 3.20 2.90 2.60 2.29 1.97 1.80 1.63 1.44

pow.5 13.21 6.73 4.56 3.47 2.79 2.46 2.14 1.89 1.70 1.54 1.38 1.12 0.92 0.68 0.56 0.43 0.30
pow.8 20.18 10.35 7.07 5.42 4.40 3.77 3.29 2.93 2.65 2.42 2.10 1.75 1.41 1.04 0.86 0.66 0.44

5%a=.05 39.07 20.15 13.84 10.68 8.79 7.53 6.62 5.95 5.42 4.98 4.33 3.71 3.08 2.44 2,12 1.80 1.48
5%a=.01 48.68 24.94 17.05 13.11 10.74 9.16 8.04 7.19 6.53 6.00 5.21 4.42 3.63 2.84 2.44 2.04 1.63

pow.5 38.66 19.38 12.95 9.73 7.80 6.51 5.59 4.90 4.36 4.04 3.37 2.71 2.04 1.42 1.11 0.80 0.48
pow.8 49.91 25.07 16.78 12.64 10.16 8.50 7.32 6.43 5.73 5.24 4.39 3.55 2.71 1.88 1.47 1.06 0.63

500 nil a=.05 3.85 3.01 2.62 2.39 2.23 2.12 2.03 1.95 1.90 1.85 1.77 1.68 1.59 1.48 1.41 1.34 1.25
nil a=.01 6.68 4.65 3.82 3.36 3.05 2.84 2.67 2.55 2.44 2.36 2.22 2.07 1.91 1.73 1.63 1.52 1.38

pow.5 3.79 2.46 1.87 1.52 1.38 1.21 1.08 0.97 0.97 0.89 0.77 0.71 0.56 0.48 0.41 0.34 0.25
pow.8 7.83 4.82 3.62 2.96 2.56 2.26 2.03 1.85 1.73 1.61 1.42 1.25 1.03 0.82 0.69 0.55 0.38

l%a=.05 15.23 8.29 5.98 4.82 4.13 3.65 3.29 3.04 2.84 2.69 2.45 2.21 1.97 1.72 1.59 1.45 1.30
l%a=.01 21.10 11.28 8.00 6.36 5.37 4.70 4.23 3.88 3.60 3.38 3.04 2.71 2.36 2.01 1.83 1.64 1.43

pow.5 14.99 7.61 5.14 3.90 3.15 2.64 2.38 2.10 1.89 1.71 1.44 1.24 0.95 0.69 0.56 0.44 0.30
pow.8 22.31 11.39 7.74 5.91 4.81 4.06 3.57 3.16 2.85 2.60 2.22 1.86 1.46 1.07 0.87 0.67 0.44

5%a=.05 46.31 23.76 16.24 12.45 10.16 8.63 7.57 6.77 6.15 5.65 4.91 4.16 3.40 2.66 2.28 1.90 1.52
5%a=.01 56.40 28.82 19.60 15.02 12.26 10.43 9.11 8.13 7.36 6.75 5.83 4.91 3.99 3.07 2.61 2.14 1.67

pow.5 45.18 22.62 15.10 11.32 9.05 7.54 6.65 5.82 5.18 4.67 3.90 3.13 2.42 1.62 1.26 0.90 0.52
pow.8 57.52 28.85 19.30 14.50 11.61 9.68 8.44 7.40 6.60 5.96 4.99 4.03 3.09 2.11 1.64 1.17 0.67

600 nil a=.05 3.85 3.01 2.62 2.39 2.23 2.11 2.02 1.95 1.89 1.84 1.77 1.68 1.58 1.47 1.41 1.34 1.25
nil a=.01 6.67 4.64 3.81 3.35 3.05 2.83 2.67 2.54 2.44 2.35 2.21 2.07 1.91 1.73 1.63 1.51 1.37

pow.5 3.79 2.46 1.87 1.52 1.38 1.21 1.08 0.97 0.96 0.89 0.77 0.71 0.56 0.48 0.41 0.34 0.25
pow.8 7.82 4.82 3.62 2.95 2.56 2.25 2.02 1.85 1.73 1.61 1.42 1.24 1.02 0.81 0.68 0.54 0.38

l%a=.05 16.94 9.11 6.51 5.21 4.43 3.91 3.54 3.24 3.01 2.84 2.57 2.31 2.03 1.76 1.62 1.47 1.31
1%a=.01 23.08 12.25 8.64 6.83 5.74 5.01 4.49 4.10 3.80 3.55 3.18 2.81 2.44 2.06 1.86 1.66 1.44

pow.5 16.14 8.46 5.71 4.32 3.49 2.93 2.52 2.32 2.07 1.88 1.59 1.28 1.04 0.75 0.61 0.47 0.30
pow.8 24.06 12.38 8.38 6.38 5.18 4.38 3.80 3.41 3.05 2.78 2.37 1.95 1.55 1.13 0.91 0.69 0.44

5%a=.05 52.82 26.98 18.38 14.08 11.50 9.78 8.55 7.63 6.91 6.34 5.48 4.59 3.73 2.86 2.44 2.00 1.56
5%a=.01 63.87 32.55 22.11 16.89 13.75 11-65 10.16 9.05 8.18 7.48 6.44 5.39 4.35 3.30 2.78 2.25 1.72

povt.5 52.51 26.28 17.54 13.17 10.55 8.80 7.55 6.61 5.88 5.30 4.42 3.63 2.73 1.88 1.41 1.00 0.57
pow.8 65.29 32.72 21.87 16.44 13.19 11.02 9.47 8.30 7.40 6.67 5.59 4.54 3.44 2.37 1.80 1.27 0.72



One Stop F Table
Hyp F dfhyp

dferr for 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

1000 nil a=.05 3.84 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.76 1.67 1.58 1.47 1.40 1.33 1.24
nil a=.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.42 2.34 2.20 2.06 1.90 1.71 1.61 1.49 1.35

pow.5 3.79 2.46 1.87 1.51 1.37 1.20 1.07 0.97 0.96 0.89 0.77 0.71 0.55 0.48 0.41 0.30 0.23
pow.8 7.81 4.81 3.61 2.94 2.55 2.24 2.02 1.84 1.72 1.60 1.41 1.23 1.01 0.80 0.67 0.52 0.36

1%a=.05 23.25 12.26 8.59 6.76 5.66 4.93 4.40 3.99 3.66 3.42 3.05 2.68 2.30 1.93 1.74 1.54 1.34
l%a=.01 30.44 15.89 11.01 8.59 7.13 6.16 5,47 4.95 4.54 4.22 3.73 3.24 2.75 2.25 2.00 1.74 1.46

pow.5 22.91 11.53 7.73 5.83 4.68 3.92 3.37 3.08 2.73 2.47 2.07 1.67 1.33 0.95 0.72 0.54 0.33
pow.8 31.72 16.01 10.78 8.16 6.58 5.53 4.78 4.27 3.81 3.45 2.91 2.38 1.86 1.33 1.04 0.76 0.47

5%a=.05 78.99 40.07 27.09 20.61 16.71 14.12 12.27 10.88 9.79 8.93 7.63 6.32 5.00 3.71 3.06 2.41 1.75
5%a=.01 92.43 46.81 31.60 23.96 19.41 16.37 14.20 12.57 11.30 10.29 8.77 7.25 5.73 4.21 3.45 2.68 1.92

pow.5 78.54 39.29 26.20 19.66 15.74 13.12 11.25 9.85 8.75 7.88 6.57 5.36 4.02 2.69 2.06 1.40 0.75
pow.8 93.82 46.97 31.35 23.54 18.86 15.73 13.50 11.83 10.53 9.48 7.92 6.42 4.83 3.25 2.49 1.70 0.92

10000 nil a=.05 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.66 1.57 1.46 1.39 1.32 1.22
nil a=.01 6.64 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.19 2.04 1.88 1.70 1.59 1.47 1.33

pow.5 3.79 2.34 1.86 1.51 1.37 1.20 1.07 0.96 0.87 0.84 0.77 0.63 0.55 0.43 0.36 0.30 0.22
pow.8 7.81 4.76 3.60 2.93 2.54 2.23 2.00 1.83 1.68 1.59 1.40 1.20 1.00 0.77 0.64 0.51 0.34

l%a=.05 135.8 68.43 45.99 34.77 28.04 23.55 20.34 17.94 16.07 14.57 12.33 10.06 7.80 5.56 4.44 3.31 2.19
l%a=.01 152.7 76.89 51.63 38.99 31.39 26.35 22.74 20.04 17.94 16.26 13.73 11.21 8.69 6.16 4.90 3.63 2.36

pow.5 134.7 67.36 44.90 33.68 26.95 22.46 19.25 16.85 14.98 13.48 11.23 8.99 6.74 4.55 3.41 2.31 1.19
pow.8 154.1 77.06 51.39 38.56 30.86 25.73 22.06 19.31 17.17 15.46 12.90 10.32 7.75 5.22 3.93 2.66 1.37

5%a=.05 601.3 301.2 201.2 151.1 121.1 101.1 86.81 76.09 67.76 61.09 51.08 41.08 31.07 21.06 16.05 11.04 6.03
5%a=.01 637.8 319.4 213.3 160.3 128.4 107.2 92.03 80.66 71.81 64.74 54.12 43.51 32.89 22.28 16.97 11.67 6.36

pow.5 600.6 300.3 200.1 150.1 120.1 100.1 85.79 75.05 66.72 60.06 50.04 40.02 30.01 20.01 15.01 10.04 5.03
pow.8 639.9 319.5 213.1 159.9 127.7 106.6 91.23 79.99 71.07 64.00 53.31 42.68 31.94 21.33 16.00 10.68 5.38



Appendix C

One-Stop PV Table



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

3 nil .05 0.771 0.864 0.903 0.924 0.938 0.947 0.954 0.959 0.964 0.967 0.972 0.978 0.983 0.989 0.991
nil .01 0.919 0.954 0.967 0.975 0.979 0.982 0.985 0.987 0.988 0.989 0.991 0.993 0.994 0.996 0.997
pow.5 0.734 0.828 0.871 0.897 0.914 0.926 0.936 0.943 0.948 0.953 0.960 0.968 0.975 0.983 0.987
pow.8 0.858 0.913 0.937 0.951 0.959 0.965 0.970 0.973 0.976 0.978 0.982 0.985 0.989 0.993 0.994
l%.05 0.777 0.866 0.904 0.925 0.938 0.947 0.954 0.959 0.964 0.967 0.972 0.978 0.983 0.989 0.991
l%.01 0.921 0.954 0.967 0.975 0.979 0.982 0.985 0.987 0.988 0.989 0.991 0.993 0.994 0.996 0.997
pow.5 0.740 0.830 0.873 0.898 0.915 0.927 0.936 0.943 0.948 0.953 0.960 0.968 0.975 0.983 0.987
pow.8 0.862 0.914 0.937 0.951 0.960 0.965 0.970 0.974 0.976 0.979 0.982 0.985 0.989 0.993 0.994
5% .05 0.796 0.873 0.907 0.927 0.939 0.948 0.955 0.960 0.964 0.967 0.973 0.978 0.983 0.989 0.991
5% .01 0.929 0.957 0.969 0.975 0.980 0.983 0.985 0.987 0.988 0.989 0.991 0.993 0.994 0.996 0.997
pow.5 0.761 0.839 0.878 0.901 0.917 0.928 0.937 0.944 0.949 0.954 0.961 0.968 0.975 0.983 0.987
Pow.8 0.874 0.919 0.940 0.952 0.961 0.966 0.971 0.974 0.977 0.979 0.982 0.986 0.989 0.993 0.994

4 nil .05 0.658 0.776 0.832 0.865 0.887 0.902 0.914 0.924 0.931 0.937 0.947 0.956 0.967 0.977 0.983
nil .01 0.841 0.900 0.926 0.941 0.951 0.958 0.963 0.967 0.971 0.973 0.977 0.982 0.986 0.990 0.993
pow.5 0.625 0.733 0.789 0.825 0.850 0.869 0.884 0.895 0.905 0.912 0.925 0.938 0.952 0.967 0.975
pow.8 0.780 0.850 0.885 0.906 0.920 0.931 0.939 0.946 0.951 0.955 0.962 0.969 0.976 0.984 0.988
l%.05 0.667 0.780 0.834 0.866 0.887 0.903 0.915 0.924 0.931 0.937 0.947 0.957 0.967 0.977 0.983
1%.01 0.846 0.902 0.927 0.942 0.951 0.958 0.963 0.967 0.971 0.973 0.977 0.982 0.986 0.990 0.993
Pow.5 0.634 0.737 0.792 0.827 0.852 0.870 0.884 0.896 0.905 0.913 0.925 0.938 0.952 0.967 0.975
pow.8 0.785 0.852 0.886 0.907 0.921 0.932 0.940 0.946 0.951 0.955 0.962 0.969 0.976 0.984 0.988
5% .05 0.699 0.793 0.841 0.871 0.891 0.905 0.917 0.925 0.932 0.938 0.947 0.957 0.967 0.977 0.983
5% .01 0.864 0.909 0.931 0.944 0.953 0.959 0.964 0.968 0.971 0.974 0.978 0.982 0.986 0.991 0.993
pow.5 0.668 0.753 0.802 0.834 0.856 0.874 0.887 0.898 0.907 0.914 0.926 0.939 0.953 0.967 0.975
pow.8 0.806 0.861 0.891 0.911 0.923 0.933 0.941 0.947 0.952 0.956 0.963 0.969 0.976 0.984 0.988



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

5 nil .05 0.569 0.698 0.764 0.806 0.835 0.856 0.872 0.885 0.896 0.904 0.918 0.933 0.948 0.964 0,973
nil .01 0.765 0.842 0.879 0.901 0.916 0.928 0.936 0.943 0.948 0.953 0.960 0.967 0.974 0.983 0.987
pow.5 0.542 0.651 0.713 0.756 0.787 0.811 0.830 0.845 0.858 0.869 0.886 0.904 0.925 0.947 0.959
pow.8 0.712 0.790 0.831 0.859 0.879 0.893 0.905 0.913 0.921 0.928 0.938 0.948 0.960 0.972 0.979
1%.05 0.581 0.703 0.767 0.808 0.836 0.857 0.873 0.886 0.896 0.905 0.919 0.933 0.948 0.964 0.973
1%.01 0.773 0.845 0.880 0.902 0.917 0.928 0.936 0.943 0.948 0.953 0.960 0.967 0.975 0.983 0.987
pow.5 0.553 0.657 0.718 0.759 0.789 0.812 0.831 0.846 0.859 0.869 0.886 0.905 0.925 0.947 0.959
pow.8 0.720 0.793 0.834 0.860 0.880 0.894 0.905 0.914 0.922 0.928 0.938 0.949 0.960 0.972 0.979
5% .05 0.624 0.723 0.779 0.816 0.842 0.861 0.876 0.888 0.898 0.907 0.920 0.934 0.949 0.965 0.973
5% .01 0.802 0.857 0.887 0.907 0.920 0.930 0.938 0.944 0.950 0.954 0.960 0.967 0.975 0.983 0.987
Pow.5 0.597 0.681 0.732 0.770 0.798 0.819 0.836 0.850 0.862 0.872 0.889 0.906 0.926 0.948 0.960
pow.8 0.749 0.808 0.842 0.866 0.884 0.897 0.908 0.916 0.924 0.930 0.939 0.949 0.960 0.972 0.979

6 nil .05 0.499 0.632 0.704 0.751 0.785 0.811 0.831 0.847 0.860 0.871 0.889 0.908 0.928 0.950 0.962
nil .01 0.696 0.785 0.830 0.859 0.879 0.894 0.906 0.915 0.923 0.929 0.939 0.950 0.961 0.973 0.979
pow.5 0.476 0.581 0.647 0.693 0.728 0.755 0.777 0.796 0.811 0.824 0.845 0.869 0.896 0.926 0.942
pow.8 0.654 0.734 0.781 0.813 0.836 0.854 0.868 0.880 0.890 0.898 0.911 0.925 0.941 0.959 0.968
1%.05 0.514 0.638 0.708 0.754 0.787 0.812 0.832 0.848 0.861 0.872 0.889 0.908 0.928 0.950 0.962
1%.01 0.708 0.790 0.833 0.861 0.881 0.895 0.907 0.916 0.923 0.930 0.939 0.950 0.961 0.973 0.979
pow.5 0.490 0.590 0.652 0.697 0.731 0.757 0.779 0.797 0.812 0.825 0.847 0.870 0.896 0.926 0.942
pow.8 0.664 0.740 0.784 0.815 0.838 0.855 0.869 0.881 0.890 0.898 0.912 0.926 0.941 0.959 0.968
5% .05 0.566 0.664 0.724 0.765 0.795 0.818 0.837 0.852 0.864 0.875 0.891 0.910 0.929 0.951 0.962
5% .01 0.747 0.807 0.844 0.868 0.886 0.899 0.910 0.918 0.925 0.931 0.941 0.951 0.962 0.973 0.980
pow.5 0.542 0.619 0.674 0.713 0.743 0.767 0.787 0.803 0.817 0.830 0.850 0.872 0.898 0.927 0.943
pow.8 0.701 0.759 0.798 0.824 0.845 0.861 0.874 0.884 0.893 0.901 0.913 0.927 0.942 0.959 0.968



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

8 nil .05 0.399 0.527 0.604 0.657 0.697 0.729 0.754 0.775 0.792 0.807 0.831 0.858 0.887 0.920 0.938
nil .01 0.585 0.684 0.740 0.778 0.806 0.827 0.844 0.858 0.869 0.879 0.895 0.912 0.931 0.951 0.962
pow.5 0.382 0.476 0.539 0.585 0.624 0.654 0.679 0.703 0.721 0.737 0.766 0.798 0.836 0.880 0.905
pow.8 0.561 0.642 0.692 0.727 0.756 0.777 0.795 0.811 0.824 0.835 0.854 0.875 0.900 0.928 0.943
l%.05 0.418 0.537 0.610 0.662 0.701 0.731 0.756 0.776 0.794 0.808 0.832 0.858 0.888 0.920 0.938
l%.0l 0.603 0.692 0.745 0.781 0.808 0.829 0.845 0.859 0.870 0.880 0.895 0.912 0.931 0.951 0.962
pow.5 0.401 0.487 0.547 0.591 0.629 0.657 0.682 0.705 0.723 0.741 0.767 0.799 0.837 0.880 0.905
pow.8 0.576 0.650 0.697 0.731 0.759 0.780 0.797 0.813 0.825 0.837 0.855 0.876 0.900 0.928 0.943
5% .05 0.482 0.573 0.634 0.679 0.714 0.742 0.764 0.783 0.800 0.813 0.836 0.861 0.889 0.921 0.939
5% .01 0.658 0.721 0.764 0.794 0.818 0.836 0.851 0.864 0.874 0.883 0.898 0.914 0.932 0.952 0.963
pow.5 0.465 0.528 0.578 0.615 0.646 0.674 0.696 0.717 0.734 0.749 0.775 0.805 0.840 0.882 0.906
pow.8 0.625 0.679 0.718 0.747 0.770 0.790 0.806 0.820 0.832 0.842 0.859 0.879 0.902 0.929 0.944

10 nil .05 0.332 0.451 0.527 0.582 0.624 0.659 0.687 0.711 0.731 0.749 0.778 0.810 0.847 0.890 0.914
nil .01 0.501 0.602 0.663 0.706 0.738 0.764 0.784 0.802 0.816 0.829 0.850 0.872 0.898 0.927 0.943
pow.5 0.319 0.400 0.459 0.503 0.539 0.570 0.596 0.620 0.640 0.659 0.691 0.731 0.776 0.833 0.866
pow.8 0.491 0.568 0.618 0.655 0.684 0.708 0.729 0.746 0.761 0.775 0.798 0.825 0.856 0.893 0.915
1%.05 0.353 0.463 0.535 0.588 0.629 0.662 0.690 0.713 0.733 0.750 0.779 0.811 0.848 0.890 0.914
l%.0l 0.524 0.613 0.670 0.711 0.742 0.767 0.787 0.804 0.818 0.830 0.851 0.873 0.899 0.927 0.944
pow.5 0.339 0.416 0.468 0.510 0.545 0.575 0.600 0.623 0.643 0.665 0.696 0.733 0.778 0.833 0.867
pow.8 0.509 0.579 0.626 0.661 0.689 0.712 0.732 0.749 0.764 0.778 0.800 0.826 0.856 0.893 0.915
5% .05 0.425 0.507 0.566 0.611 0.647 0.677 0.702 0.724 0.742 0.758 0.785 0.815 0.851 0.892 0.915
5% .01 0.591 0.652 0.696 0.730 0.756 0.778 0.796 0.812 0.825 0.836 0.855 0.876 0.900 0.928 0.944
pow.5 0.410 0.465 0.507 0.542 0.572 0.598 0.621 0.641 0.659 0.676 0.705 0.739 0.784 0.837 0.869
pow.8 0.568 0.617 0.653 0.682 0.706 0.727 0.744 0.760 0.773 0.785 0.806 0.830 0.860 0.895 0.916



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40
12 nil 05 0.283 0.393 0.466 0.521 0.564 0.600 0.630 0.655 0.677 0.696 0.729 0.766 0.809 0.860 0.890

nil 01 0.437 0.536 0.598 0.643 0.678 0.707 0.730 0.750 0.767 0.782 0.806 0.834 0.865 0.902 0.923
pow 5 0.274 0.346 0.396 0.437 0.472 0.502 0.529 0.553 0.575 0.595 0.625 0.667 0.718 0.786 0.826
pow .8 0.436 0.509 0.557 0.594 0.623 0.648 0.670 0.689 0.706 0.721 0.744 0.775 0.811 0.858 0.885
1%.05 0.307 0.407 0.476 0.528 0.570 0.604 0.634 0.658 0.680 0.699 0.731 0.767 0.810 0.861 0.890
1% 01 0.464 0.550 0.607 0.650 0.684 0.711 0.734 0.753 0.769 0.784 0.808 0.835 0.866 0.903 0.924
pow 5 0.296 0.360 0.408 0.446 0.479 0.508 0.534 0.558 0.579 0.598 0.627 0.670 0.719 0.787 0.827
pow 8 0.457 0.522 0.566 0.601 0.629 0.653 0.674 0.692 0.709 0.723 0.747 0.777 0.812 0.858 0.885
5% 05 0.384 0.457 0.512 0.556 0.592 0.623 0.649 0.672 0.692 0.709 0.739 0.773 0.814 0.863 0.891
5% 01 0.540 0.597 0.640 0.675 0.703 0.727 0.747 0.764 0.779 0.792 0.814 0.839 0.869 0.904 0.925
pow 5 0.371 0.415 0.452 0.483 0.512 0.537 0.560 0.580 0.599 0.617 0.643 0.682 0.728 0.792 0.830
pow .8 0.523 0.566 0.600 0.628 0.652 0.673 0.691 0.707 0.722 0.735 0.756 0.784 0.818 0.861 0.887

14 nil 05 0.247 0.348 0.417 0.471 0.514 0.550 0.580 0.607 0.630 0.650 0.685 0.725 0.773 0.832 0.866
nil .01 0.388 0.482 0.544 0.590 0.626 0.656 0.681 0.703 0.721 0.738 0.765 0.797 0.834 0.878 0.903
pow .5 0.240 0.304 0.351 0.389 0.416 0.446 0.472 0.496 0.518 0.532 0.569 0.610 0.666 0.738 0.785
pow .8 0.393 0.461 0.507 0.543 0.571 0.596 0.618 0.637 0.655 0.669 0.696 0.728 0.769 0.821 0.854
1% 05 0.272 0.364 0.429 0.479 0.521 0.555 0.585 0.611 0.633 0.653 0.687 0.727 0.774 0.832 0.867
1% 01 0.418 0.499 0.555 0.598 0.633 0.662 0.686 0.706 0.725 0.740 0.767 0.798 0.835 0.878 0.904
pow .5 0.264 0.320 0.363 0.399 0.430 0.453 0.478 0.501 0.523 0.543 0.572 0.612 0.668 0.739 0.786
pow 8 0.416 0.476 0.518 0.551 0.579 0.602 0.623 0.642 0.659 0.674 0.699 0.730 0.770 0.822 0.854
5% 05 0.353 0.418 0.469 0.511 0.547 0.577 0.604 0.627 0.648 0.666 0.697 0.735 0.780 0.835 0.868
5% 01 0.499 0.552 0.594 0.628 0.657 0.681 0.702 0.721 0.737 0.751 0.776 0.804 0.838 0.880 0.905
pow 5 0.341 0.379 0.411 0.440 0.467 0.485 0.508 0.528 0.547 0.559 0.592 0.628 0.679 0.746 0.791
pow 8 0.488 0.526 0.557 0.583 0.607 0.625 0.644 0.660 0.675 0.687 0.711 0.740 0.778 0.826 0.857



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

16 nil .05 0.219 0.312 0.378 0.429 0.471 0.507 0.538 0.564 0.588 0.609 0.645 0.688 0.740 0.804 0.843
nil 01 0.348 0.438 0.498 0.544 0.581 0.612 0.638 0.660 0.680 0.698 0.727 0.762 0.803 0.853 0.883
pow 5 0.213 0.271 0.310 0.345 0.376 0.403 0.422 0.446 0.468 0.489 0.519 0.561 0.615 0.696 0.746
pow.8 0.357 0.421 0.464 0.498 0.527 0.551 0.571 0.591 0.609 0.625 0.652 0.685 0.728 0.786 0.823
1% 05 0.245 0.329 0.390 0.439 0.479 0.513 0.543 0.569 0.592 0.613 0.648 0.690 0.741 0.805 0.844
\% 01 0.380 0.456 0.511 0.554 0.589 0.618 0.643 0.665 0.684 0.701 0.730 0.764 0.804 0.854 0.883
pow 5 0.238 0.289 0.328 0.361 0.385 0.411 0.436 0.452 0.473 0.493 0.523 0.564 0.617 0.697 0.747
pow.8 0.382 0.437 0.477 0.509 0.535 0.558 0.579 0.596 0.613 0.629 0.655 0.688 0.730 0.788 0.824
5% 05 0.328 0.387 0.434 0.475 0.509 0.539 0.565 0.588 0.609 0.628 0.660 0.699 0.748 0.809 0.846
5% 01 0.465 0.514 0.554 0.588 0.617 0.641 0.663 0.682 0.699 0.714 0.740 0.771 0.809 0.857 0.885
pow 5 0.318 0.350 0.379 0.406 0.425 0.447 0.469 0.482 0.501 0.519 0.546 0.583 0.632 0.706 0.753
pow .8 0.458 0.492 0.521 0.546 0.566 0.586 0.604 0.618 0.633 0.647 0.670 0.700 0.739 0.793 0.827

18 nil 05 0.197 0.283 0.345 0.394 0.435 0.470 0.500 0.527 0.551 0.573 0.610 0.654 0.709 0.778 0.821
nil 01 0.315 0.401 0.459 0.504 0.541 0.572 0.599 0.622 0.643 0.661 0.692 0.729 0.774 0.829 0.863
pow .5 0.190 0.242 0.280 0.313 0.342 0.362 0.386 0.409 0.423 0.444 0.474 0.517 0.573 0.654 0.706
pow.8 0.327 0.387 0.428 0.461 0.488 0.511 0.532 0.552 0.567 0.584 0.611 0.646 0.691 0.752 0.792
1% 05 0.224 0.301 0.358 0.405 0.444 0.477 0.507 0.533 0.556 0.577 0.613 0.657 0.711 0.779 0.822
1% .01 0.349 0.421 0.473 0.515 0.550 0.580 0.605 0.627 0.647 0.665 0.695 0.731 0.775 0.830 0.864
pow 5 0.218 0.263 0.299 0.324 0.352 0.377 0.394 0.416 0.437 0.449 0.478 0.520 0.575 0.656 0.711
pow 8 0.354 0.405 0.443 0.471 0.497 0.521 0.539 0.558 0.575 0.589 0.615 0.649 0.693 0.754 0.794
5% .05 0.308 0.361 0.406 0.444 0.477 0.506 0.531 0.554 0.575 0.594 0.627 0.668 0.718 0.784 0.824
5% 01 0.437 0.483 0.521 0.553 0.582 0.606 0.628 0.647 0.665 0.680 0.708 0.741 0.782 0.834 0.866
pow 5 0.298 0.327 0.353 0.372 0.394 0.416 0.430 0.449 0.467 0.478 0.504 0.542 0.592 0.667 0.715
pow 8 0.433 0.463 0.490 0.511 0.532 0.551 0.567 0.583 0.598 0.610 0.633 0.664 0.704 0.761 0.798



One-Stop PV Table

dfhyp
dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

20 nil .05 0.178 0.259 0.317 0.364 0.404 0.438 0.468 0.495 0.518 0.540 0.577 0.623 0.680 0.754 0.799
nil .01 0.288 0.369 0.426 0.470 0.506 0.537 0.564 0.588 0.609 0.627 0.660 0.698 0.746 0.806 0.843
pow.5 0.172 0.220 0.256 0.286 0.307 0.332 0.356 0.370 0.391 0.403 0.441 0.475 0.533 0.612 0.669
pow.8 0.301 0.358 0.397 0.428 0.453 0.477 0.498 0.515 0.532 0.546 0.576 0.609 0.655 0.719 0.762
1%.05 0.206 0.277 0.331 0.376 0.413 0.446 0.475 0.501 0.524 0.545 0.581 0.626 0.682 0.755 0.800
1%.01 0.324 0.391 0.441 0.482 0.516 0.545 0.571 0.594 0.614 0.632 0.663 0.701 0.748 0.808 0.844
pow.5 0.201 0.242 0.270 0.298 0.324 0.341 0.364 0.385 0.398 0.418 0.446 0.479 0.536 0.614 0.675
pow.8 0.330 0.378 0.411 0.440 0.465 0.485 0.505 0.524 0.538 0.554 0.580 0.613 0.658 0.720 0.764
5% .05 0.291 0.340 0.381 0.417 0.449 0.477 0.502 0.525 0.545 0.564 0.597 0.639 0.691 0.760 0.804
5% .01 0.414 0.456 0.492 0.524 0.551 0.575 0.597 0.616 0.634 0.650 0.678 0.712 0.756 0.812 0.847
pow.5 0.285 0.307 0.331 0.348 0.369 0.389 0.402 0.420 0.431 0.448 0.473 0.503 0.555 0.627 0.679
pow.8 0.412 0.439 0.463 0.483 0.503 0.521 0.536 0.552 0.564 0.578 0.601 0.630 0.671 0.729 0.769

22 nil .05 0.163 0.238 0.294 0.339 0.377 0.410 0.439 0.466 0.489 0.511 0.548 0.594 0.653 0.730 0.779
nil .01 0.265 0.342 0.396 0.440 0.475 0.506 0.533 0.557 0.578 0.597 0.630 0.670 0.720 0.784 0.824
pow.5 0.158 0.202 0.235 0.263 0.283 0.307 0.322 0.343 0.356 0.375 0.404 0.446 0.495 0.578 0.638
pow.8 0.280 0.333 0.370 0.400 0.424 0.447 0.465 0.484 0.499 0.515 0.541 0.577 0.622 0.688 0.734
1%.05 0.192 0.258 0.308 0.351 0.387 0.419 0.447 0.472 0.495 0.516 0.553 0.598 0.655 0.731 0.780
1%.01 0.302 0.365 0.413 0.453 0.486 0.515 0.541 0.563 0.584 0.602 0.634 0.673 0.722 0.786 0.825
pow.5 0.187 0.224 0.250 0.276 0.301 0.317 0.338 0.351 0.371 0.382 0.409 0.451 0.499 0.579 0.639
pow.8 0.310 0.354 0.386 0.413 0.437 0.456 0.476 0.491 0.508 0.521 0.547 0.581 0.625 0.690 0.735
5% .05 0.277 0.322 0.360 0.394 0.425 0.452 0.476 0.498 0.519 0.537 0.571 0.612 0.665 0.737 0.784
5% .01 0.393 0.433 0.467 0.497 0.524 0.548 0.569 0.588 0.606 0.622 0.651 0.686 0.731 0.791 0.829
pow.5 0.271 0.291 0.312 0.327 0.347 0.359 0.378 0.388 0.406 0.415 0.439 0.476 0.519 0.594 0.649
pow.8 0.393 0.418 0.440 0.459 0.478 0.493 0.509 0.522 0.536 0.547 0.570 0.600 0.640 0.700 0.742



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

24 nil .05 0.151 0.221 0.273 0.316 0.353 0.385 0.414 0.440 0.463 0.484 0.522 0.568 0.628 0.708 0.759
nil .01 0.246 0.319 0.371 0.413 0.448 0.478 0.505 0.528 0.550 0.569 0.603 0.644 0.695 0.763 0.806
pow.5 0.146 0.187 0.218 0.244 0.263 0.285 0.299 0.320 0.332 0.351 0.378 0.411 0.460 0.544 0.600
pow.8 0.261 0.312 0.347 0.376 0.398 0.420 0.438 0.456 0.471 0.486 0.513 0.545 0.591 0.659 0.705
1%.05 0.180 0.241 0.289 0.329 0.364 0.395 0.422 0.447 0.470 0.490 0.527 0.572 0.631 0.709 0.760
l%.01 0.284 0.343 0.389 0.427 0.459 0.488 0.513 0.536 0.556 0.575 0.607 0.647 0.698 0.765 0.807
pow.5 0.175 0.210 0.233 0.258 0.274 0.296 0.308 0.328 0.347 0.358 0.384 0.416 0.473 0.546 0.609
pow.8 0.292 0.333 0.363 0.389 0.410 0.430 0.447 0.464 0.481 0.493 0.519 0.550 0.597 0.661 0.709
5% .05 0.264 0.306 0.342 0.375 0.403 0.430 0.453 0.475 0.495 0.513 0.546 0.588 0.642 0.716 0.765
5%.01 0.376 0.413 0.445 0.474 0.500 0.523 0.544 0.563 0.581 0.597 0.626 0.662 0.708 0.770 0.811
pow.5 0.259 0.276 0.296 0.310 0.328 0.340 0.357 0.367 0.384 0.392 0.415 0.452 0.495 0.562 0.621
pow .8 0.377 0.399 0.420 0.437 0.455 0.469 0.485 0.497 0.511 0.522 0.543 0.574 0.613 0.672 0.717

26 nil .05 0.140 0.206 0.256 0.297 0.332 0.363 0.391 0.417 0.439 0.460 0.498 0.544 0.605 0.687 0.740
nil .01 0.229 0.298 0.349 0.389 0.423 0.453 0.479 0.503 0.524 0.543 0.577 0.619 0.672 0.743 0.788
pow.5 0.135 0.174 0.202 0.222 0.245 0.259 0.280 0.291 0.311 0.320 0.347 0.388 0.436 0.512 0.570
pow.8 0.245 0.293 0.326 0.352 0.376 0.395 0.414 0.429 0.445 0.458 0.484 0.519 0.564 0.631 0.679
1%.05 0.169 0.226 0.271 0.310 0.343 0.373 0.400 0.424 0.446 0.467 0.503 0.549 0.608 0.689 0.741
l%.01 0.268 0.323 0.367 0.404 0.436 0.464 0.488 0.511 0.531 0.550 0.582 0.623 0.675 0.744 0.789
pow.5 0.165 0.197 0.218 0.241 0.257 0.277 0.289 0.308 0.318 0.336 0.362 0.393 0.440 0.515 0.580
pow.8 0.277 0.315 0.343 0.368 0.388 0.407 0.423 0.440 0.453 0.468 0.493 0.524 0.568 0.633 0.683
5% .05 0.254 0.293 0.327 0.357 0.385 0.410 0.433 0.454 0.474 0.492 0.524 0.566 0.620 0.696 0.747
5% .01 0.360 0.395 0.426 0.453 0.478 0.501 0.522 0.540 0.558 0.574 0.603 0.639 0.686 0.751 0.794
pow.5 0.248 0.264 0.282 0.295 0.312 0.322 0.339 0.348 0.364 0.372 0.395 0.421 0.463 0.540 0.593
pow.8 0.362 0.383 0.402 0.418 0.435 0.448 0.463 0.475 0.488 0.498 0.520 0.547 0.586 0.648 0.692



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

28 nil .05 0.130 0.193 0.240 0.279 0.314 0.344 0.371 0.396 0.418 0.439 0.476 0.522 0.583 0.667 0.722
nil .01 0.214 0.280 0.329 0.368 0.401 0.430 0.456 0.480 0.501 0.520 0.554 0.596 0.650 0.723 0.771
pow.5 0.126 0.162 0.189 0.208 0.229 0.243 0.263 0.273 0.292 0.301 0.327 0.357 0.405 0.491 0.541
pow.8 0.230 0.276 0.308 0.333 0.355 0.373 0.392 0.407 0.422 0.435 0.460 0.492 0.536 0.607 0.653
1%.05 0.160 0.213 0.256 0.293 0.325 0.354 0.380 0.404 0.426 0.446 0.481 0.527 0.586 0.669 0.724
l%.0l 0.254 0.306 0.348 0.383 0.414 0.442 0.466 0.488 0.508 0.527 0.559 0.600 0.653 0.725 0.772
pow.5 0.156 0.185 0.206 0.227 0.241 0.261 0.272 0.291 0.300 0.318 0.333 0.373 0.419 0.493 0.551
pow.8 0.263 0.299 0.325 0.349 0.368 0.387 0.402 0.418 0.431 0.446 0.467 0.500 0.544 0.609 0.658
5% .05 0.245 0.281 0.313 0.342 0.368 0.392 0.415 0.435 0.454 0.472 0.504 0.545 0.600 0.677 0.729
5% .01 0.346 0.379 0.409 0.435 0.459 0.481 0.501 0.520 0.537 0.553 0.581 0.618 0.666 0.733 0.777
pow.5 0.239 0.253 0.270 0.281 0.298 0.307 0.323 0.331 0.339 0.354 0.376 0.402 0.443 0.511 0.565
pow.8 0.349 0.368 0.386 0.401 0.417 0.430 0.444 0.455 0.465 0.478 0.498 0.525 0.563 0.623 0.668

30 nil .05 0.122 0.181 0.226 0.264 0.297 0.326 0.353 0.377 0.399 0.419 0.455 0.502 0.563 0.648 0.705
nil 01 0.201 0.264 0.311 0.349 0.381 0.410 0.435 0.458 0.479 0.498 0.532 0.574 0.629 0.705 0.754
pow.5 0.118 0.152 0.178 0.195 0.216 0.228 0.247 0.258 0.276 0.284 0.309 0.339 0.385 0.461 0.522
pow.8 0.217 0.261 0.292 0.315 0.337 0.354 0.372 0.386 0.402 0.414 0.438 0.469 0.513 0.581 0.631
1% .05 0.152 0.202 0.243 0.278 0.309 0.337 0.362 0.385 0.407 0.426 0.462 0.507 0.566 0.650 0.706
1% 01 0.241 0.291 0.331 0.365 0.395 0.422 0.446 0.467 0.487 0.506 0.538 0.579 0.633 0.707 0.755
pow.5 0.149 0.176 0.194 0.215 0.228 0.247 0.257 0.275 0.284 0.292 0.316 0.344 0.389 0.464 0.523
pow.8 0.251 0.285 0.310 0.332 0.350 0.368 0.383 0.399 0.411 0.422 0.446 0.476 0.518 0.584 0.633
5% 05 0.236 0.271 0.300 0.328 0.353 0.377 0.398 0.418 0.437 0.454 0.485 0.526 0.581 0.659 0.713
5% .01 0.334 0.365 0.393 0.418 0.442 0.463 0.483 0.501 0.518 0.533 0.562 0.598 0.647 0.715 0.761
pow 5 0.231 0.243 0.259 0.269 0.285 0.294 0.309 0.317 0.324 0.339 0.359 0.385 0.425 0.483 0.539
pow 8 0.338 0.355 0.372 0.386 0.401 0.413 0.426 0.437 0.447 0.459 0.479 0.505 0.542 0.599 0.645



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

40 nil .05 0.092 0.139 0.176 0.207 0.234 0.259 0.282 0.304 0.323 0.342 0.375 0.419 0.479 0.567 0.628
nil .01 0.155 0.206 0.244 0.277 0.305 0.331 0.353 0.374 0.394 0.412 0.444 0.486 0.542 0.623 0.679
pow.5 0.090 0.116 0.132 0.150 0.160 0.176 0.184 0.200 0.207 0.213 0.234 0.259 0.300 0.362 0.413
pow.8 0.170 0.205 0.229 0.249 0.265 0.282 0.295 0.309 0.320 0.330 0.351 0.378 0.418 0.480 0.528
1%.05 0.123 0.162 0.194 0.222 0.248 0.272 0.294 0.314 0.333 0.350 0.383 0.425 0.484 0.570 0.631
l%.0l 0.196 0.234 0.267 0.296 0.321 0.345 0.366 0.386 0.404 0.421 0.452 0.493 0.547 0.626 0.681
pow.5 0.121 0.140 0.154 0.169 0.180 0.188 0.203 0.210 0.216 0.231 0.251 0.275 0.305 0.365 0.415
pow.8 0.206 0.231 0.251 0.268 0.283 0.296 0.310 0.320 0.331 0.343 0.363 0.389 0.425 0.485 0.532
5% .05 0.207 0.231 0.255 0.277 0.298 0.317 0.335 0.352 0.369 0.384 0.413 0.450 0.503 0.583 0.640
5% .01 0.288 0.312 0.334 0.355 0.375 0.393 0.410 0.426 0.442 0.456 0.483 0.518 0.566 0.639 0.690
pow.5 0.200 0.211 0.219 0.231 0.237 0.243 0.256 0.262 0.266 0.279 0.288 0.309 0.344 0.398 0.444
pow.8 0.294 0.306 0.317 0.329 0.339 0.348 0.359 0.367 0.375 0.386 0.400 0.421 0.455 0.509 0.551

50 nil ,05 0.075 0.113 0.143 0.170 0.194 0.215 0.235 0.254 0.272 0.288 0.319 0.359 0.416 0.503 0.566
nil .01 0.125 0.168 0.201 0.229 0.254 0.277 0.297 0.316 0.334 0.350 0.381 0.420 0.475 0.557 0.616
pow.5 0.073 0.094 0.107 0.121 0.130 0.143 0.150 0.156 0.169 0.174 0.192 0.214 0.240 0.296 0.334
pow.8 0.140 0.169 0.189 0.206 0.220 0.234 0.244 0.254 0.266 0.275 0.293 0.317 0.350 0.407 0.450
1% 05 0.106 0.136 0.163 0.187 0.209 0.229 0.248 0.266 0.282 0.298 0.328 0.367 0.422 0.507 0.569
l%.01 0.167 0.198 0.225 0.250 0.272 0.292 0.311 0.329 0.346 0.362 0.390 0.428 0.481 0.561 0.619
pow.5 0.103 0.118 0.128 0.136 0.149 0.156 0.168 0.174 0.179 0.192 0.200 0.220 0.245 0.299 0.348
pow.8 0.177 0.196 0.212 0.225 0.238 0.249 0.261 0.270 0.278 0.289 0.304 0.326 0.358 0.412 0.457
5% .05 0.185 0.206 0.225 0.243 0.261 0.278 0.293 0.308 0.322 0.336 0.361 0.396 0.446 0.523 0.582
5% .01 0.257 0.277 0.295 0.313 0.330 0.346 0.361 0.375 0.389 0.402 0.426 0.459 0.505 0.578 0.631
pow.5 0.182 0.187 0.197 0.202 0.207 0.211 0.222 0.226 0.229 0.240 0.247 0.264 0.286 0.334 0.378
pow's 0.263 0.272 0.282 0.290 0.298 0.305 0.314 0.321 0.327 0.336 0.347 0.366 0.392 0.440 0.481



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 1 0 1 2 1 5 2 0 3 0 4 0
60 nil 05 0.062 0.095 0.121 0.144 0.165 0.184 0.202 0.218 0.234 0.249 0.277 0.314 0.368 0.452 0.515

nil .01 0.105 0.142 0.171 0.196 0,218 0.238 0.256 0.273 0.290 0.305 0.333 0.370 0.423 0.503 0.563
pow 5 0.061 0.079 0.090 0.102 0.109 0.115 0.126 0.131 0.135 0.147 0.155 0.173 0.205 0.245 0.280
pow.8 0.118 0.144 0.161 0.176 0.187 0.198 0.209 0.217 0.225 0.235 0.249 0.270 0.302 0.350 0.390
1% 05 0.094 0.119 0.141 0.162 0.181 0.198 0.215 0.231 0.246 0.260 0.287 0.323 0.375 0.456 0.519
l% .01 0.147 0.173 0.196 0.217 0.237 0.255 0.272 0.288 0.303 0.317 0.344 0.379 0.430 0.508 0.567
pow 5 0.091 0.103 0.111 0.117 0.128 0.133 0.138 0.149 0.153 0.157 0.171 0.189 0.211 0.260 0.294
pow.8 0.156 0.172 0.185 0.196 0.207 0.216 0.224 0.234 0.241 0.248 0.263 0.283 0.310 0.360 0.399
5% 05 0.172 0.188 0.204 0.220 0.235 0.249 0.263 0.276 0.288 0.301 0.324 0.355 0.402 0.476 0.534
5% .01 0.235 0.251 0.267 0.282 0.297 0.311 0.324 0.337 0.349 0.361 0.383 0.413 0.458 0.528 0.582
pow 5 0.166 0.174 0.178 0.182 0.190 0.194 0.197 0.200 0.210 0.213 0.218 0.233 0.251 0.295 0.326
pow.8 0.241 0.249 0.256 0.262 0.270 0.276 0.281 0.287 0.295 0.299 0.309 0.325 0.348 0.391 0.425

70 nil 05 0.054 0.082 0.105 0.125 0.143 0.160 0.176 0.191 0.206 0.219 0.245 0.279 0.329 0.410 0.472
nil .01 0.091 0.123 0.149 0.171 0.190 0.208 0.225 0.241 0.256 0.270 0.296 0.331 0.381 0.459 0.519
pow .5 0.053 0.068 0.077 0.088 0.094 0.099 0.109 0.114 0.117 0.128 0.134 0.150 0.170 0.205 0.249
pow.8 0.103 0.125 0.140 0.153 0.163 0.172 0.182 0.190 0.197 0.206 0.218 0.236 0.262 0.306 0.346
1% 05 0.086 0.106 0.125 0.143 0.160 0.176 0.190 0.205 0.218 0.231 0.255 0.289 0.337 0.415 0.476
l% .01 0.132 0.154 0.174 0.193 0.210 0.226 0.242 0.256 0.270 0.283 0.308 0.341 0.389 0.465 0.523
pow 5 0.083 0.092 0.099 0.108 0.113 0.117 0.121 0.131 0.134 0.137 0.150 0.166 0.185 0.220 0.251
pow 8 0.142 0.154 0.164 0.175 0.183 0.191 0.198 0.207 0.213 0.219 0.232 0.250 0.274 0.316 0.351
5% .05 0.160 0.175 0.189 0.202 0.215 0.228 0.240 0.251 0.263 0.274 0.295 0.324 0.367 0.437 0.494
5% .01 0.218 0.232 0.246 0.259 0.272 0.285 0.296 0.308 0.319 0.330 0.350 0.378 0.419 0.487 0.540
pow .5 0.157 0.160 0.163 0.171 0.174 0.176 0.179 0.187 0.190 0.192 0.203 0.209 0.225 0.255 0.293
pow .8 0.224 0.230 0.236 0.242 0.247 0.252 0.257 0.263 0.268 0.272 0.283 0.294 0.314 0.350 0.384



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

80 nil .05 0.047 0.072 0.093 0.111 0.127 0.142 0.157 0.170 0.183 0.196 0.219 0.251 0.298 0.375 0.435
nil .01 0.080 0.109 0.131 0.151 0.169 0.185 0.201 0.215 0.229 0.242 0.266 0.299 0.346 0.421 0.480
pow.5 0.046 0.060 0.068 0.077 0.083 0.087 0.096 0.100 0.103 0.106 0.118 0.133 0.151 0.183 0.213
pow.8 0.091 0.111 0.124 0.136 0.145 0.153 0.162 0.168 0.175 0.180 0.193 0.210 0.233 0.273 0.307
l%.05 0.079 0.096 0.113 0.129 0.144 0.158 0.171 0.184 0.196 0.208 0.230 0.261 0.307 0.381 0.440
1% .01 0.121 0.140 0.158 0.174 0.190 0.204 0.218 0.231 0.244 0.256 0.278 0.309 0.355 0.428 0.485
pow.5 0.078 0.083 0.089 0.097 0.101 0.105 0.108 0.117 0.120 0.122 0.134 0.140 0.165 0.197 0.226
pow.8 0.130 0.139 0.149 0.158 0.165 0.172 0.178 0.186 0.191 0.196 0.208 0.221 0.246 0.284 0.316
5%.05 0.152 0.164 0.176 0.189 0.200 0.212 0.222 0.232 0.243 0.253 0.272 0.298 0.338 0.405 0.460
5% .01 0.204 0.217 0.229 0.241 0.253 0.264 0.274 0.285 0.295 0.305 0.323 0.349 0.388 0.453 0.505
pow.5 0.147 0.153 0.156 0.158 0.161 0.162 0.170 0.172 0.174 0.176 0.186 0.190 0.204 0.231 0.257
pow.8 0.211 0.216 0.221 0.225 0.229 0.233 0.239 0.243 0.247 0.250 0.260 0.270 0.287 0.319 0.347

90 nil .05 0.042 0.064 0.083 0.099 0.114 0.128 0.141 0.154 0.166 0.177 0.199 0.228 0.272 0.345 0.404
nil .01 0.071 0.097 0.118 0.136 0.152 0.167 0.181 0.194 0.207 0.219 0.242 0.272 0.317 0.390 0.447
pow.5 0.041 0.053 0.060 0.069 0.074 0.078 0.086 0.089 0,092 0.094 0.106 0.119 0.135 0.165 0.193
pow.8 0.081 0.099 0.111 0.122 0.130 0.137 0.145 0.151 0.157 0.162 0.174 0.189 0.210 0.246 0.277
1% 05 0.072 0.089 0.104 0.118 0.131 0.144 0.156 0.168 0.179 0.190 0.210 0.239 0.281 0.352 0.409
l% .01 0.111 0.129 0.144 0.159 0.173 0.186 0.199 0.211 0.223 0.234 0.255 0.284 0.326 0.397 0.453
pow.5 0.071 0.077 0.081 0.088 0.092 0.095 0.103 0.106 0.108 0.110 0.121 0.126 0.150 0.179 0.195
pow.8 0.119 0.128 0.136 0.144 0.151 0.156 0.164 0.169 0.174 0.178 0.189 0.201 0.223 0.258 0.284
5% .05 0.144 0.156 0.167 0.178 0.188 0.198 0.208 0.217 0.227 0.235 0.253 0.277 0.315 0.378 0.431
50/0.01 0.193 0.205 0.216 0.226 0.237 0.247 0.257 0.266 0.275 0.284 0.301 0.326 0.362 0.424 0.474
pow.5 0.142 0.144 0.146 0.148 0.154 0.156 0.158 0.160 0.161 0.169 0.171 0.182 0.195 0.221 0.236
pow.8 0.200 0.204 0.208 0.212 0.216 0.220 0.223 0.227 0.230 0.235 0.241 0.253 0.269 0.298 0.320



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

100 nil 05 0.038 0.058 0.075 0.090 0.103 0.116 0.128 0.140 0.151 0.161 0.182 0.209 0.251 0.320 0.377
nil .01 0.064 0.088 0.107 0.123 0.138 0.152 0.165 0.177 0.189 0.200 0.221 0.250 0.292 0.362 0.418
pow.5 0.037 0.048 0.055 0.062 0.067 0.070 0.077 0.081 0.083 0.085 0.096 0.108 0.123 0.150 0.166
pow.8 0.074 0.090 0.101 0.110 0.118 0.124 0.132 0.137 0.142 0.147 0.158 0.172 0.191 0.225 0.250
l%.05 0.067 0.082 0.096 0.108 0.121 0.132 0.143 0.154 0.164 0.174 0.193 0.220 0.260 0.327 0.383
l%.01 0.104 0.119 0.133 0.147 0.160 0.172 0.183 0.194 0.205 0.215 0.235 0.262 0.303 0.370 0.424
pow .5 0.066 0.071 0.075 0.081 0.085 0.087 0.094 0.097 0.099 0.101 0.111 0.115 0.128 0.154 0.179
pow .8 0.111 0.119 0.126 0.133 0.139 0.144 0.150 0.155 0.159 0.163 0.173 0.184 0.202 0.233 0.260
5% .05 0.139 0.150 0.158 0.168 0.178 0.187 0.196 0.204 0.213 0.221 0.237 0.260 0.295 0.355 0.406
5% .01 0.184 0.195 0.205 0.214 0.224 0.233 0.242 0.250 0.259 0.267 0.283 0.306 0.340 0.399 0.448
pow.5 0.135 0.137 0.142 0.144 0.145 0.147 0.148 0.155 0.156 0.157 0.160 0.169 0.181 0.204 0.218
pow.8 0.190 0.194 0.198 0.201 0.204 0.208 0.211 0.215 0.218 0.221 0.226 0.236 0.250 0.277 0.297

120 nil 05 0.032 0.049 0.063 0.075 0.087 0.098 0.108 0.118 0.128 0.137 0.155 0.179 0.216 0.279 0.332
nil 01 0.054 0.074 0.090 0.104 0.117 0.129 0.140 0.151 0.161 0.171 0.189 0.215 0.253 0.317 0.370
pow.5 0.031 0.040 0.046 0.049 0.056 0.059 0.061 0.068 0.070 0.072 0.080 0.084 0.096 0.119 0.142
pow.8 0.062 0.076 0.085 0.092 0.099 0.105 0.110 0.116 0.120 0.124 0.133 0.143 0.159 0.188 0.212
1%.05 0.061 0.073 0.084 0.095 0.105 0.115 0.124 0.133 0.142 0.151 0.167 0.191 0.226 0.287 0.339
1%.01 0.092 0.105 0.117 0.128 0.139 0.149 0.159 0.169 0.178 0.187 0.204 0.228 0.264 0.326 0.377
pow 5 0.059 0.063 0.068 0.071 0.073 0.075 0.081 0.083 0.085 0.086 0.095 0.098 0.109 0.132 0.154
pow.8 0.098 0.105 0.111 0.116 0.121 0.125 0.130 0.134 0.137 0.141 0.149 0.158 0.173 0.199 0.223
5% 05 0.130 0.138 0.147 0.154 0.162 0.170 0.177 0.185 0.192 0.199 0.213 0.233 0.264 0.318 0.365
5% 01 0.170 0.179 0.187 0.195 0.203 0.211 0.219 0.226 0.233 0.241 0.254 0.274 0.305 0.358 0.404
pow.5 0.126 0.128 0.129 0.134 0.135 0.136 0.137 0.138 0.144 0.145 0.147 0.155 0.159 0.178 0.198
pow 8 0.175 0.178 0.181 0.184 0.187 0.189 0.192 0.194 0.198 0.200 0.204 0.213 0.222 0.244 0.265



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

150 nil .05 0.025 0.039 0.051 0.061 0.070 0.079 0.088 0.096 0.104 0.112 0.127 0.148 0.179 0.235 0.282
nil .01 0.043 0.060 0.073 0.084 0.095 0.105 0.114 0.123 0.132 0.140 0.156 0.178 0.211 0.268 0.315
pow.5 0.025 0.032 0.037 0.040 0.045 0.047 0.049 0.054 0.056 0.058 0.065 0.068 0.078 0.097 0.108
pow.8 0.050 0.061 0.069 0.075 0.080 0.085 0.089 0.094 0.097 0.101 0.108 0.116 0.129 0.153 0.170
1%.05 0.054 0.063 0.072 0.080 0.089 0.096 0.104 0.112 0.119 0.126 0.140 0.160 0.190 0.243 0.289
1%.01 0.080 0.090 0.099 0.108 0.117 0.126 0.134 0.142 0.149 0.157 0.171 0.192 0.223 0.277 0.323
pow.5 0.052 0.056 0.058 0.060 0.062 0.066 0.068 0.069 0.071 0.071 0.078 0.081 0.090 0.108 0.119
pow.8 0.086 0.090 0.094 0.098 0.102 0.106 0.109 0.112 0.115 0.117 0.124 0.131 0.143 0.165 0.181
5% .05 0.120 0.126 0.132 0.139 0.146 0.152 0.158 0.165 0.170 0.176 0.187 0.204 0.230 0.277 0.319
5% .01 0.155 0.162 0.168 0.175 0.181 0.188 0.194 0.200 0.206 0.212 0.224 0.240 0.267 0.313 0.354
pow.5 0.116 0.120 0.121 0.122 0.123 0.123 0.124 0.125 0.130 0.130 0.132 0.139 0.141 0.157 0.167
pow.8 0.160 0.163 0.164 0.166 0.168 0.169 0.171 0.173 0.176 0.178 0.181 0.188 0.194 0.212 0.226

200 nil .05 0.019 0.030 0.038 0.046 0.053 0.060 0.067 0.073 0.080 0.086 0.097 0.114 0.139 0.185 0.225
nil .01 0.033 0.045 0.055 0.064 0.072 0.080 0.087 0.094 0.101 0.108 0.120 0.138 0.165 0.212 0.253
pow.5 0.019 0.024 0.028 0.030 0.034 0.036 0.037 0.041 0.042 0.043 0.045 0.051 0.059 0.068 0.083
pow.8 0.038 0.046 0.052 0.057 0.061 0.064 0.068 0.071 0.074 0.076 0.081 0.088 0.098 0.114 0.130
l%.05 0.046 0.053 0.060 0.065 0.072 0.078 0.084 0.089 0.095 0.100 0.111 0.127 0.151 0.195 0.234
1%.01 0.067 0.074 0.081 0.088 0.095 0.101 0.107 0.113 0.119 0.125 0.136 0.153 0.178 0.223 0.262
pow.5 0.045 0.047 0.048 0.051 0.052 0.053 0.054 0.055 0.059 0.060 0.062 0.067 0.070 0.084 0.092
pow.8 0.071 0.075 0.078 0.081 0.083 0.085 0.088 0.090 0.093 0.095 0.098 0.105 0.112 0.128 0.141
5% .05 0.109 0.114 0.118 0.123 0.128 0.133 0.138 0.142 0.147 0.151 0.160 0.173 0.194 0.232 0.267
5% .01 0.138 0.143 0.148 0.153 0.158 0.163 0.168 0.172 0.177 0.182 0.191 0.204 0.225 0.263 0.298
pow 5 0.106 0.106 0.109 0.110 0.110 0.111 0.111 0.112 0.112 0.112 0.117 0.118 0.124 0.132 0.139
pow 8 0.142 0.143 0.145 0.146 0.148 0.149 0.150 0.151 0.152 0.153 0.157 0.160 0.167 0.177 0.187



One-Stop PV Table

dfhyp

dferr 1 2 3 45 6 7 8 9 10 12 15 20 30 40

300 nil .05 0.013 0.020 0.026 0.031 0.036 0.041 0.045 0.050 0.054 0.058 0.067 0.078 0.097 0.130 0.160
nil .01 0.022 0.030 0.037 0.043 0.049 0.054 0.059 0.064 0.069 0.073 0.082 0.095 0.114 0.150 0.181
pow.5 0.013 0.016 0.018 0.020 0.023 0.024 0.025 0.025 0.028 0.029 0.030 0.035 0.040 0.046 0.052
pow.8 0.025 0.031 0.035 0.038 0.041 0.044 0.046 0.047 0.050 0.052 0.055 0.060 0.066 0.077 0.086
1%.05 0.037 0.042 0.046 0.050 0.054 0.058 0.062 0.066 0.070 0.074 0.081 0.092 0.109 0.141 0.170
1%.01 0.053 0.058 0.062 0.067 0.071 0.075 0.079 0.084 0.088 0.092 0.100 0.111 0.129 0.162 0.192
pow.5 0.036 0.037 0.038 0.040 0.041 0.042 0.042 0.043 0.043 0.046 0.047 0.048 0.053 0.058 0.064
pow.8 0.056 0.058 0.060 0.062 0.063 0.064 0.066 0.067 0.068 0.070 0.073 0.076 0.081 0.091 0.099
5% .05 0.097 0.100 0.103 0.107 0.109 0.112 0.115 0.119 0.122 0.125 0.131 0.140 0.154 0.182 0.208
5% .01 0.119 0.122 0.126 0.129 0.132 0.136 0.139 0.142 0.145 0.149 0.155 0.164 0.179 0.207 0.233
pow.5 0.094 0.095 0.095 0.095 0.098 0.098 0.098 0.098 0.099 0.099 0.099 0.103 0.104 0.108 0.113
pow.8 0.122 0.123 0.123 0.124 0.126 0.126 0.127 0.127 0.128 0.129 0.130 0.133 0.136 0.142 0.149

400 nil .05 0.010 0.015 0.019 0.023 0.027 0.031 0.034 0.038 0.041 0.044 0.051 0.060 0.074 0.100 0.124
nil .01 0.016 0.023 0.028 0.033 0.037 0.041 0.045 0.049 0.052 0.056 0.063 0.072 0.088 0.116 0.141
pow.5 0.009 0.012 0.014 0.015 0.017 0.018 0.019 0.019 0.021 0.022 0.023 0.026 0.030 0.035 0.039
pow.8 0.019 0.024 0.026 0.029 0.031 0.033 0.034 0.036 0.038 0.039 0.041 0.045 0.050 0.058 0.065
1%.05 0.033 0.036 0.039 0.042 0.045 0.048 0.051 0.054 0.057 0.060 0.065 0.073 0.087 0.112 0.135
1%.01 0.045 0.049 0.052 0.055 0.059 0.062 0.065 0.068 0.071 0.074 0.080 0.089 0.103 0.129 0.153
pow.5 0.032 0.033 0.033 0.034 0.034 0.036 0.036 0.036 0.037 0.037 0.040 0.040 0.044 0.049 0.053
pow.8 0.048 0.049 0.050 0.051 0.052 0.054 0.054 0.055 0.056 0.057 0.059 0.061 0.066 0.073 0.079
5% .05 0.089 0.092 0.094 0.097 0.099 0.101 0.104 0.106 0.109 0.111 0.115 0.122 0.133 0.155 0.175
5% .01 0.108 0.111 0.113 0.116 0.118 0.121 0.123 0.126 0.128 0.130 0.135 0.142 0.154 0.175 0.196
pow.5 0.088 0.088 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.092 0.092 0.092 0.093 0.096 0.100
pow.8 0.111 0.111 0.112 0.112 0.113 0.113 0.113 0.114 0.114 0.116 0.116 0.118 0.119 0.124 0.128



One-Stop PV Table

dfhyp

dferr 1 2 3 45 6 7 8 9 10 12 15 20 30 40

500 nil .05 0.008 0.012 0.015 0.019 0.022 0.025 0.028 0.030 0.033 0.036 0.041 0.048 0.060 0.081 0.102
nil .01 0.013 0.018 0.022 0.026 0.030 0.033 0,036 0.039 0.042 0.045 0.051 0.059 0.071 0.094 0.115
pow.5 0.008 0.010 0.011 0.012 0.014 0.014 0.015 0.015 0.017 0.018 0.018 0.021 0.022 0.028 0.032
pow.8 0.015 0.019 0.021 0.023 0.025 0.026 0.028 0.029 0.030 0.031 0.033 0.036 0.039 0.047 0.052
l%.05 0.030 0.032 0.035 0.037 0.040 0.042 0.044 0.046 0.049 0.051 0.056 0.062 0.073 0.093 0.113
1%.01 0.040 0.043 0.046 0.048 0.051 0.053 0.056 0.058 0.061 0.063 0.068 0.075 0.086 0.108 0.128
pow.5 0.029 0.030 0.030 0.030 0.031 0.031 0.032 0.033 0.033 0.033 0.033 0.036 0.037 0.040 0.043
pow.8 0.043 0.044 0.044 0.045 0.046 0.046 0.048 0.048 0.049 0.049 0.051 0.053 0.055 0.061 0.065
5% .05 0.085 0.087 0.089 0.091 0.092 0.094 0.096 0.098 0.100 0.102 0.105 0.111 0.120 0.137 0.154
5% .01 0.101 0.103 0.105 0.107 0.109 0.111 0.113 0.115 0.117 0.119 0.123 0.128 0.138 0.155 0.173
pow.5 0.083 0.083 0.083 0.083 0.083 0.083 0.085 0.085 0.085 0.085 0.086 0.086 0.088 0.089 0.092
pow.8 0.103 0.103 0.104 0.104 0.104 0.104 0.106 0.106 0.106 0.106 0.107 0.108 0.110 0.112 0.116

600 nil .05 0.006 0.010 0.013 0.016 0.018 0.021 0.023 0.025 0.028 0.030 0.034 0.040 0.050 0.069 0.086
nil .01 0.011 0.015 0.019 0.022 0.025 0.028 0.030 0.033 0.035 0.038 0.042 0.049 0.060 0.080 0.098
pow.5 0.006 0.008 0.009 0.010 0.011 0.012 0.012 0.013 0.014 0.015 0.015 0.017 0.018 0.023 0.026
pow.8 0.013 0.016 0.018 0.019 0.021 0.022 0.023 0.024 0.025 0.026 0.028 0.030 0.033 0.039 0.043
1%.05 0.027 0.029 0.032 0.034 0.036 0.038 0.040 0.041 0.043 0.045 0.049 0.055 0.063 0.081 0.097
1% .01 0.037 0.039 0.041 0.044 0.046 0.048 0.050 0.052 0.054 0.056 0.060 0.066 0.075 0.093 0.110
pow.5 0.026 0.027 0.028 0.028 0.028 0.028 0.029 0.030 0.030 0.030 0.031 0.031 0.033 0.036 0.039
pow.8 0.039 0.040 0.040 0.041 0.041 0.042 0.042 0.043 0.044 0.044 0.045 0.046 0.049 0.053 0.057
5% .05 0.081 0.083 0.084 0.086 0.087 0.089 0.091 0.092 0.094 0.096 0.099 0.103 0.111 0.125 0.140
5% .01 0.096 0.098 0.100 0.101 0.103 0.104 0.106 0.108 0.109 0.111 0.114 0.119 0.127 0.142 0.156
pow.5 0.080 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.083 0.083 0.086 0.086
pow.8 0.098 0.098 0.099 0.099 0.099 0.099 0.099 0.100 0.100 0.100 0.100 0.102 0.103 0.106 0.107



One-Stop PV Table

dfhyp

dferr 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40

1000 nil .05 0.004 0.006 0.008 0.009 0.011 0.012 0.014 0.015 0.017 0.018 0.021 0.024 0.031 0.042 0.053
nil .01 0.007 0.009 0.011 0.013 0.015 0.017 0.018 0.020 0.021 0.023 0.026 0.030 0.037 0.049 0.061
pow.5 0.004 0.005 0.006 0.006 0.007 0.007 0.007 0.008 0.009 0.009 0.009 0.010 0.011 0.014 0.016
pow .8 0.008 0.010 0.011 0.012 0.013 0.013 0.014 0.014 0.015 0.016 0.017 0.018 0.020 0.023 0.026
1% 05 0.023 0.024 0.025 0.026 0.028 0.029 0.030 0.031 0.032 0.033 0.035 0.039 0.044 0.055 0.065
l%.01 0.030 0.031 0.032 0.033 0.034 0.036 0.037 0.038 0.039 0.040 0.043 0.046 0.052 0.063 0.074
pow.5 0.022 0.023 0.023 0.023 0.023 0.023 0.023 0.024 0.024 0.024 0.024 0.024 0.026 0.028 0.028
pow.8 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.033 0.033 0.033 0.034 0.034 0.036 0.038 0.040
5% .05 0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.080 0.081 0.082 0.084 0.087 0.091 0.100 0.109
5% .01 0.085 0.086 0.087 0.087 0.088 0.089 0.090 0.091 0.092 0.093 0.095 0.098 0.103 0.112 0.121
pow.5 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.074 0.074 0.075 0.076
pow .8 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.087 0.087 0.087 0.088 0.088 0.089 0.090

000 nil .05 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.004 0.006
0 nil .01 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.005 0.006

pow.5 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
pow.8 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003
1%.05 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.016 0.017
1% .01 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.018 0.019
pow.5 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
pow.8 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
5% .05 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.058 0.058 0.058 0.059 0.059 0.060
5% .01 0.060 0.060 0.060 0.060 0.060 0.060 0.061 0.061 0.061 0.061 0.061 0.061 0.062 0.063 0.064
pow.5 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057
pow.8 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060
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Appendix D

df Needed for Power = .80
(a = .05) in Tests of Traditional
Null Hypothesis



dferr Needed for Power=.80 (a = .05) in Tests of Traditional Null Hypothesis

ES dfhyp

PV d 1 2 3 4 5 67 8 9 10 12 15 20 30 40 60 120

0.01 0.20 775 952 1072 1165 1260 1331 1394 1451 1504 1580 1670 1825 1992 2302 2565 3027 4016

0.02 0.29 385 473 533 579 627 662 694 722 762 787 832 909 993 1176 1313 1513 2010

0.03 0.35 255 313 353 384 416 439 460 479 505 522 552 603 660 782 874 1008 1341

0.04 0.41 190 233 263 286 310 328 343 358 377 390 413 451 494 585 654 774 1031

0.05 0.46 151 186 209 228 247 261 273 285 300 310 329 359 402 466 522 618 825

0.06 0.51 125 154 173 189 204 216 227 236 249 257 273 298 333 388 434 514 687

0.07 0.55 106 131 148 161 174 184 193 204 212 220 233 255 285 331 371 440 601

0.08 0.59 92 114 128 140 152 160 168 178 185 191 203 222 248 289 324 384 525

0.09 0.63 81 100 113 124 134 142 149 157 164 169 179 196 220 256 287 341 466

0.10 0.67 73 90 101 110 120 127 133 141 146 152 161 176 197 230 258 312 419

0.11 0.70 66 81 91 101 108 115 120 127 132 137 148 159 178 208 238 283 388

0.12 0.74 60 74 83 92 99 104 110 116 121 125 135 145 163 190 218 259 355

0.13 0.77 55 68 76 84 90 96 101 106 111 115 124 133 150 178 200 238 327

0.14 0.81 50 62 70 78 83 88 94 98 102 106 114 123 138 165 185 220 302

0.15 0.84 47 58 65 72 77 82 87 91 95 98 106 115 129 153 172 205 286

0.16 0.87 43 54 61 67 72 76 81 85 88 92 99 107 120 143 161 192 268



ES dfhyp

PV d 1 2 3 4 5 67 8 9 10 12 15 20 30 40 60 120

0.17 0.91 40 50 57 63 68 72 76 80 83 86 93 101 112 134 151 183 251

0.18 0.94 38 47 53 59 63 67 71 75 78 81 87 96 106 126 142 172 236

0.19 0.97 36 44 50 55 59 63 67 70 73 77 82 90 101 119 136 163 227

0.20 1.00 34 42 47 52 56 60 64 67 69 73 77 85 96 112 129 154 214

0.22 1.06 30 37 42 47 51 54 57 60 62 65 70 76 86 102 116 139 194

0.24 1.12 27 34 39 42 46 49 52 54 57 59 63 69 78 93 105 128 178

0.26 1.19 25 31 35 38 42 44 47 49 52 54 58 63 71 85 96 117 163

0.28 1.25 22 28 32 35 38 41 43 45 48 49 53 58 65 78 90 107 152

0.30 1.31 21 26 30 32 35 37 40 42 44 45 49 53 61 72 83 100 142

0.32 1.37 19 24 27 30 33 35 37 39 40 42 45 50 56 68 76 93 131

0.34 1.44 18 22 25 28 30 32 34 36 38 39 42 46 52 63 72 87 123

0.36 1.50 16 20 23 26 28 30 32 33 35 37 39 43 49 59 67 81 115

0.38 1.57 15 19 22 24 26 28 30 31 33 34 37 40 45 55 62 76 108

0.40 1.63 14 18 20 23 24 26 28 29 31 32 35 38 43 52 59 72 101

0.42 1.70 13 17 19 21 23 24 26 27 29 30 32 36 40 48 55 67 96

0.44 1.77 12 15 18 20 21 23 24 26 27 28 30 33 38 45 52 64 91

0.46 1.85 12 14 17 19 20 22 23 24 25 26 29 31 35 43 49 60 85

0.48 1.92 11 14 16 18 19 20 22 23 24 25 27 30 34 40 46 57 81

0.50 2.00 10 13 15 16 18 19 20 21 22 24 25 28 32 38 44 54 76

0.60 2.45 8 10 11 12 13 14 15 16 17 18 19 21 24 29 33 41 58

0.70 3.06 6 7 8 9 10 11 11 12 13 13 15 16 18 22 25 30 44
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Appendix E

cf Needed for Power = .80 (a = .05)
in Tests of the Hypothesis That
Treatments Account for 1 %
or Less of the Variance in Outcomes



dferr Needed for Power =.80 (a = .05) in Tests of the Hypothesis That Treatments Account for 1% or Less of the

Variance in Outcomes

ES dfhyp

PV d 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120

.02 .29 3225 3242 3301 3266 3334 3349 3364 3429 3442 3454 3479 3570 3621 3900 4042 4379 5260

.03 .35 1058 1086 1104 1122 1139 1176 1185 1199 1212 1254 1271 1303 1377 1518 1615 1833 2299

.04 .41 573 590 607 623 650 658 670 683 694 716 736 779 836 920 993 1151 1458

.05 .46 373 389 405 422 434 445 457 472 483 492 509 541 586 652 728 833 1075

.06 .51 269 285 299 313 323 334 343 357 365 373 387 414 450 506 568 654 854

.07 .55 208 223 235 246 255 267 275 283 290 297 315 338 362 419 460 533 718

.08 .59 166 180 192 202 211 219 226 236 243 249 265 279 307 357 393 457 606

.09 .63 139 151 161 170 180 187 193 199 208 214 224 241 266 303 343 400 532

.10 .67 117 130 139 147 154 162 168 174 179 187 196 212 234 268 297 355 473

.11 .70 101 113 122 129 136 143 149 154 159 166 174 189 205 240 266 318 426

.12 .74 89 99 108 115 121 127 133 138 142 147 157 170 185 217 241 289 388

.13 .77 80 89 97 104 109 114 121 125 129 133 142 152 168 197 220 264 355

.14 .81 72 80 87 94 99 104 110 114 118 121 130 139 154 181 202 243 327

.15 .84 65 73 80 86 91 95 101 105 108 112 120 128 142 168 187 225 303



ES dfhyp

PV d 1 2 3 4 S 6 7 8 9 10 12 15 20 30 40 60 120

.16 .87 59 67 73 79 84 88 93 97 100 103 111 119 132 156 174 209 283

.17 .91 54 61 68 73 77 81 85 90 93 96 103 110 123 145 162 195 269

.18 .94 49 57 63 68 72 76 79 83 86 89 96 103 115 136 152 183 252

.19 .97 45 53 58 63 67 71 74 78 81 84 90 97 108 127 144 172 238

.20 1.00 42 49 55 59 63 67 69 73 76 79 84 91 101 120 137 162 224

.22 1.06 37 43 48 52 56 59 62 65 68 70 75 81 91 107 123 146 204

.24 1.12 32 38 43 47 50 53 56 59 61 63 68 74 83 97 111 134 185

.26 1.19 29 34 38 42 45 48 51 53 55 57 61 67 75 90 101 122 169

.28 1.25 26 31 35 38 41 43 46 48 50 53 56 61 69 82 92 111 156

.30 1.31 24 28 32 35 37 40 42 44 46 48 51 56 63 75 86 103 144

.32 1.37 21 26 29 32 34 36 39 40 42 44 47 52 58 69 79 96 135

.34 1.44 20 24 27 30 32 34 36 37 39 41 44 48 54 64 73 89 125

.36 1.50 18 22 25 27 29 32 33 35 36 38 41 44 50 60 68 83 117

.38 1.57 17 20 23 25 27 29 31 32 34 35 38 41 47 56 64 78 110

.40 1.63 15 19 21 23 25 27 29 30 32 33 35 39 44 53 60 73 103

.42 1.70 14 18 20 22 24 25 27 28 30 31 33 36 41 49 56 69 98

.44 1.77 13 16 19 20 22 24 25 27 28 29 31 34 39 47 53 65 92

.46 1.85 12 15 17 19 21 22 24 25 26 27 29 32 37 44 50 61 87

.48 1.92 12 14 16 18 19 21 22 23 25 26 28 30 34 41 47 58 82

.50 2.00 11 13 15 17 18 20 21 22 23 24 26 29 32 39 45 54 77

.60 2.45 8 10 11 13 14 14 16 16 17 18 19 21 24 29 34 41 59

.70 3.06 6 7 8 9 10 11 12 12 13 13 14 16 18 22 25 31 44
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